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                                                                Abstract 
 

 

HEHR, BRIAN DOUGLAS.  Development of the Thermal Neutron Scattering Cross 

Sections of Graphitic Systems using Classical Molecular Dynamics Simulations.  (Under the 

direction of Prof. Ayman I. Hawari.)   

 

Proposed next-generation nuclear reactor concepts such as the High Temperature Gas 

Reactor (HTGR) and Very High Temperature Reactor (VHTR) incorporate graphite as a 

structural material and neutron moderator.  The details of neutron slowing-down and 

thermalization in graphite impact the reactor energy spectrum, which, in turn, influences core 

design and fuel loading calculations.  Of particular interest is the behavior of the graphite 

scattering cross section at thermal energies (below about 1 eV) where the interatomic binding 

environment of carbon atoms in the system determines the form of the differential cross 

section.  In the absence of material-specific thermal cross sections, neutronics codes will, by 

default, utilize the free-gas approximation, which is commonly a drastic overestimation of 

the true cross section.   

 

In this work, the thermal cross sections of graphite were developed, using classical molecular 

dynamics (MD), for crystalline graphite and for graphite structures subjected to displacement 

cascades simulating the exposure to neutron irradiation.  This was made possible through the 

implementation of Van Hove correlation functions linking the atomic trajectories to the 

neutron scattering phenomenon.  In order to evaluate the cross section directly from the 

atomic trajectories, significant quantum effects were integrated into the (real and symmetric) 

classical scattering formulae.  For incoherent scattering, the specific phenomena of 
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importance are detailed balance and atomic recoil, and a correction scheme has been 

developed herein to account for both.  This correction takes the form of a transformation 

between the real and imaginary parts of the intermediate scattering function, established on 

the basis of a fluctuation-dissipation type relation.  The transformed intermediate function is 

shown to produce consistent differential cross sections that are in agreement with ab-initio 

based calculations.  Furthermore, the transformation procedure is proven to reduce to the 

appropriate semiclassical limits at the extremes of small and large momentum transfers.  

 

Correlations among the positions of distinct atomic pairs are also computed for the purpose 

of ascertaining the coherent inelastic cross section.  These are validated against experimental 

measurements of the total scattering law and cross section of graphite.  The Van Hove 

approach is markedly advantageous in this respect because the coherent inelastic component, 

which accounts for as much as 20-25% of the total graphite cross section, is inaccessible in 

the LEAPR / NJOY formalism used to generate the standard ENDF/B-VII graphite libraries.                                      

   

Additionally, damage was introduced into the MD graphite model through a series of 

collision cascades, each beginning with a randomly selected primary knock-on atom of 

energy 1 – 1.5 keV.  As the cascade concentration was raised (simulating higher radiation 

exposure levels), increasingly complex defect formations were observed and specific defect 

types were identified including simple vacancies and interstitials, the Stone-Wales defect, the 

interplanar divacancy defect, interplanar cross-linking and regions of near-amorphization.  
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Total amorphization was also studied by melting and rapidly quenching the system at 

different densities.   

 

For the purpose of studying the effect of damage on the cross section and frequency 

distribution, collision cascade concentrations were accumulated in an 8000-atom crystalline 

MD system.  A transition from the crystalline frequency distribution towards the amorphous 

distribution was confirmed in the damaged region of the cell, associated with a dampening of 

the high-frequency in-plane optical modes of the vibrational spectrum, an enhancement of 

the out-of-plane modes, and a flattening of overall distribution.  The total cross section was 

found to increase by as much at 48%, with the most significant change occurring in the 0.01-

0.03 eV range.           

 

Equation Chapter 1 Section 1                 
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Chapter 1  

Introduction 
 

1.1   Overview  

 

The use of graphite as a moderator and structural material dates back to the Chicago Pile I 

experiment of 1942, during which the world’s first artificially induced, self-sustained chain 

reaction was achieved.  Since then, graphite has been integrated into commercial and 

research reactors worldwide; the Russian RMBK fleet and the British Dragon reactor, for 

instance, have both featured graphite as the neutron moderator.  A number of Generation-IV 

designs, including the Very High Temperature Reactor (VHTR), likewise incorporate 

graphite either as stacked prismatic blocks or in pebble form with embedded TRISO fuel 

particles.  A schematic of the proposed VHTR system is shown in Fig. 1-1.  

 

                       Fig. 1-1.  Diagram of the Very High Temperature Reactor (VHTR) concept [1]  .        
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At present, the majority of commercial power reactors are water-moderated.  The resurgence 

of graphite has been driven by certain advantageous physical properties that include excellent 

mechanical strength, low density, high melting temperature, large heat capacity, and a low 

neutron absorption cross section.  The standard metric for rating the effectiveness of a 

moderator is the moderating ratio, given by the formula: 

                                                               s
M

a








                                                               (1.1) 

where Σs is the scattering cross section, Σa is the absorption cross section, and ξ, the average 

lethargy gain, is defined as: 

                                                   
 

2
1 1

1 ln
2 1

A A

A A


  
   

 
                                                  (1.2) 

in which A is the atomic mass number of the moderator.  Essentially, ξ is a measure of the 

average energy lost by the neutron in a collision with a moderator atom.  The purpose of the 

moderator is to deliver low-energy neutrons to the fuel; therefore, the moderating ratio is 

directly proportional to the lethargy gain and scattering cross section, and inversely 

proportional to the absorption cross section, which represents a neutron removal mechanism.  

The moderating ratio of several common moderator materials is tabulated in Table 1.1. 

 

                          Table 1.1.   Atomic number and moderating ratio of select moderators [2] 

Moderator A ξΣs / Σa 

   

H2O 1 (H),16 (O) 71 

D2O 2 (D),16 (O) 5670 

C 12 192 

Be 9 143 
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Deuterium oxide (heavy water) far outshines other moderators in terms of M , chiefly 

because of its tiny absorption cross section.  This advantage is offset by the hefty price of 

manufacturing heavy water, as well as the requirement of a high pressure environment to 

prevent vaporization.  The pressure constraint is particularly detrimental in new reactor 

designs such as the VHTR which emphasize high temperature operation as a means of 

increasing thermodynamic efficiency.  Graphite, the second most effective moderator in 

Table 1.1, retains its structural integrity even at temperatures approaching the melting point 

of 3650˚C [3] – well above the expected accident temperature in a VHTR, for instance.                   

 

In fact, graphite acts not only as the moderator in the VHTR concept, but also as a structural 

material.  As mentioned, graphite remains stable well above accident temperatures and can 

absorb excess heat like a thermal sponge in, for instance, an overpower or loss of coolant 

event.  Perhaps the most limiting accident scenario presently under consideration is a pipe 

break that enables air ingress into the core.  At high temperatures, graphite reacts 

exothermically with oxygen to produce the toxic gas CO (carbon monoxide), and the heat of 

reaction serves to increase the core maximum temperature still further, raising the specter of 

a graphite fire.  Such an event transpired in 1957 at the Windscale reactor in Britain, where 

an uncontrolled release of Wigner energy set the air-cooled core ablaze [4].  Given this 

possibility, current designs for gas cooled reactors typically specify an inert coolant such as 

helium.  The buildup of stored (Wigner) energy remains a concern, however, and this topic 

will be revisited in more depth later.                                          
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1.2   Forms of Graphite 

 

1.2.1 Perfect Graphite  

 

The graphite structure is illustrated in Fig. 1-2.  In its perfectly crystalline state, graphite 

exhibits a hexagonal, planar configuration with ABAB type stacking.  A rhombohedral form 

also exists with ABC stacking yet identical in-plane properties.  Whereas neighboring layers 

of atoms are weakly bound through Van der Waals forces, the characteristic honeycomb 

structure of each plane is held together by strong covalent bonds, resulting in a high degree 

of anisotropy in the system properties.  Two distinct atomic sites exist in graphite: one is 

distinguished by the presence of atoms directly above and below in neighboring planes (at 

 c/2) and the other by honeycomb gaps above and below.  

 

 

Fig. 1-2.  Graphite structure and lattice parameters (at 0 K).  The hexagonal unit cell of graphite is                

demarcated in bold lines.   
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To define the system mathematically, a grid of lattice points is constructed wherein the 

displacement between any two points is given by:    

                                                             r Aa Bb Cc                                                     (1.3) 

in which A,B, and C are integers and a , b , and c  are the primitive translation vectors.  

Defining α, β, and γ as the angles between vectors b - c ,  a  - c , and a - b respectively, the 

hexagonal lattice corresponds to the conditions a b c  , 090    and 0120  .  An 

example of a hexagonal lattice is shown in Fig. 1-3.        

 
      Fig. 1-3.  The hexagonal lattice.  Elements of rotational symmetry are indicated by blue triangles. 

 

 

The structure of any crystal is specified unequivocally through a combination of the lattice 

and basis, where the basis represents translations relative to a lattice site.  All other atoms are 

equivalent by symmetry to these basis atoms, and indeed, the crystal system itself can be 
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visualized as the product of infinite repetitions of the basis atoms.  For graphite, there are 

four basis sites, which, specified as fractions of a unit cell, are: 

                                      C1:   [0 , 0 , 1/4] 

                                      C2:   [0 , 0 , 3/4] 

                                      C3:   [1/3 , 2/3 , 1/4] 

                                      C4:   [2/3 , 1/3 , 3/4] 

Since the basis positions and primitive vector angles are rigidly fixed in the hexagonal 

symmetry group associated with graphite, all that remains is to establish the lattice 

parameters, i.e. the unit cell scaling factors that generate the minimum-energy crystal 

structure at a given temperature.  As depicted in Fig. 1-2, these are a = 2.46 Å (in-plane) and 

c = 6.7 Å (out-of-plane) in 0 K graphite, resulting in a nearest-neighbor interatomic spacing 

of 1.42 Å.  The phenomenon of thermal expansion (or contraction) arises from a temperature-

dependent shift in the lattice parameters due to anharmonicity in the interatomic potential 

energy.           

   

1.2.2  Reactor-Grade Graphite 

 

Graphite manufactured for use in the nuclear industry differs from ideal (crystalline) graphite 

in certain respects.  First, the constituent graphitic crystallites are randomly oriented, rather 

than aligned along a single c-axis.  Second, the crystalline regions are embedded in a porous 

matrix of amorphous carbon, and the average density of reactor-grade graphite is 

consequently lower than that of perfect graphite (approximately 1.6 – 1.85 g/cm
3
 as opposed 
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to 2.25 g/cm
3
) [5].  Third, impurities that adversely affect reactor performance, such as boron, 

are largely removed in the production of reactor-grade graphite.    

 

In addition to randomization in the orientation of crystallites, disorder is also observable in 

the interlayer spacing and stacking.  Whereas perfect graphite exhibits a single, characteristic 

interlayer spacing in hexagonal form and a different, but still constant, spacing in 

rhombohedral form, the spacings in reactor-grade graphite are subject to variability.  

Deviations from the nominal spacing have been represented, in past work [6], using a 

Gaussian distribution.  Moreover, the graphitic layers are turbostratic in reactor-grade such 

that adjacent layers may be translated or rotated randomly in relation to each other [7].  A 

consequence of this disorder is that the ABAB stacking sequence is broken, and, in fact, 

many of the characteristic powder diffraction peaks of graphite are broadened or lost entirely 

[8].             

 

Bearing in mind the lower density of reactor-grade graphite as well as its coexistent phases, 

one would expect the properties of the reactor-grade and crystalline variants to diverge 

significantly.  Indeed, the properties of reactor-grade graphite are much more isotropic due to 

the lack of a collective orientation (although some anisotropy still exists because of the 

extrusion process).  In terms of structural integrity, isotropy is an advantage in nuclear 

applications because the moderator will undergo uniform dimensional changes under heating 

or irradiation.   
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1.3   Nuclear Cross Sections 

 

Consider a monoenergetic beam of neutrons incident on a thin slab of known composition.  

Assuming that attenuation is negligible within the slab, the neutron-nuclear reaction rate will 

be uniform and a cross section proportional to the probability of reaction can be defined as: 

                                                             
D

R

N



                                                                  (1.4) 

where R is the reaction rate density,   is the incident flux (# of neutrons per unit area per 

unit time) and ND is the atomic number density of the slab.  Dimensionally, the nuclear cross 

section therefore represents an area, consistent with its original conceptualization as the 

effective “target area” presented to an incoming particle.  While the cross section is a simple 

constant in this hypothetical example, a more constructive approach is to assign separate 

cross sections to different modes of interaction.  The focus of this study is on scattering 

interactions in which the relevant neutron variables are the incident energy, scattered energy, 

and the scattering angle.  A diagram of a neutron scattering event is shown in Fig. 1-4.    

 

Fig. 1-4.  Schematic of a neutron scattering event.   The scattering element could be a single atom  

           or a finite piece of a many-atom system.  For the purpose of defining the cross section, it is assumed 

that only one interaction per neutron occurs in the element.    
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The quantity of interest is the probability that a neutron of incident energy E will scatter into 

a solid angle dΩ about Ω with a final energy of dE’ about E’, where, in the notation of  

Fig. 1-4: 

                                                               sind d d                                                        (1.5) 

This probability is contained in the double differential scattering cross section, defined as: 

                                                             
' '

sNd

d dE d dE






 
                                                  (1.6)                                             

where Ns is the number of neutrons scattered per unit time into dΩ about Ω with a final 

energy of dE’ about E’. From the definition, it follows that: 

     
' '

d d
d

dE d dE

 
  

   probability of scattering into dE’ about E’, regardless of Ω 

      '
'

d d
dE

d d dE

 
 

    probability of scattering into dΩ about Ω, regardless of E’ 

         '
'

d
d dE

d dE


   

   probability of scattering  

If the scattering event causes no change in the total kinetic energy, the scattering is labeled 

elastic.  If, in addition, E = E’, then only the direction of propagation of the incident neutron 

is altered.  When the total kinetic energy is not conserved, the scattering is inelastic and some 

form of excitation or de-excitation has occurred in the scattering system.  A variety of 

physical phenomena can lead to excitation, including but not limited to phonon emission, 

phonon absorption, and nuclear excitation (at higher energies).  At low neutron energies 

(below about 1 eV), thermalization transpires through inelastic processes only.                
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1.4   Thermal Scattering Cross Section of Graphite 

1.4.1  Overview of Thermal Scattering 

 

When the incident energy of a neutron falls below approximately 1 eV, the atomic structure 

of a material exerts an appreciable influence on the scattering properties of the neutron.  The 

reason is twofold:  first, the neutron energy coincides with vibrational (phonon) energies of 

atoms in the crystal structure; second, the wavelength of the neutron is on the same order as 

the interatomic distances of the constituent atoms.  Therefore, the neutron can be viewed as 

scattering from the collective structure rather than from any individual atom.  The typical 

behavior of the cross section in the thermal scattering regime is illustrated in Fig. 1-5.  

 

                              Fig. 1-5.  The neutron scattering cross section at thermal energies.   
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The underlying mechanisms of thermal scattering fall into two broad categories.  Elastic 

scattering can occur when the wavelength of the incident neutron satisfies Bragg’s diffraction 

law, given by: 

                                                               2 sinn d                                                           (1.7) 

where n is an integer, λ is the neutron wavelength, d is the spacing between atomic planes, 

and θ is the angle between the neutron and the scattering plane.  Clearly, Bragg’s law yields a 

meaningful solution only in the case that sin 1  , thereby putting a lower bound on the 

neutron energy at which coherent elastic scattering is possible.  For graphite, this minimum 

energy is about 2 meV and coincides with an abrupt spike in the cross section, apparent in 

Fig. 1-5 near the minimum point of the inelastic cross section curve.  Coherent elastic 

scattering is not directly relevant to the thermalization process because only the direction of 

neutron propagation is affected.  Therefore, this component of the cross section will be 

disregarded in the present work.  Incoherent elastic scattering is important only for 

hydrogenous solids and will likewise be disregarded.  

 

Inelastic processes occur throughout the entire range of thermal neutron energies.  Generally, 

these involve the exchange of one or more phonons between the neutron and lattice; phonon 

absorption (de-excitation) is dominant at low incident energies while phonon emission 

(excitation) is responsible for the main contribution at high energies.  Inelastic energy 

exchange can include both a coherent and an incoherent component, with the relative 

proportion depending upon the structural arrangement and intrinsic scattering lengths of the 
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atoms.  The scattering length of carbon-12 is overwhelmingly coherent and, consequentially, 

both mechanisms are important in graphite.  

 

In the high energy limit – where the neutron wavelength becomes much smaller than the 

interatomic spacings – scattering interactions are well described by an elastic “billiard ball” 

model and the specific distribution of phonons is no longer important.  Hence, the scattering 

cross section of any material approaches the free atom cross section in this limit, which 

demarcates the boundary between the thermal and epithermal regimes.    

 

1.4.2  Graphite Cross Section Calculations 

  

Presently, the standard approach to thermal cross section generation is to invoke 

approximations such that the double differential scattering cross section is reduced to an 

analytic function of the vibrational (phonon) density of states, ρ(ω).  The LEAPR module of 

the NJOY code [9], for example, follows this methodology.  If one chooses to work within 

the LEAPR framework, the main issue becomes the accurate determination of the density of 

states. 

 

In the early days of thermal library creation, ρ(ω) was often inferred by fitting the interatomic 

force constants to known material properties such as the heat capacity, bulk modulus or 

dispersion relation.  This approach suffers from two deficiencies: first, there is the theoretical 

possibility that multiple ρ(ω) trial functions could fit the same set of experimental data; 
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second, the fitting method is not predictive because the quantity of interest is forcibly 

conformed to measured data, rather than being constituted independently and then validated 

against measured data.   

 

With improvements in computational power, it is now feasible to evaluate thermal cross 

sections through atomistic simulation.  Recently, ρ(ω) has been calculated to high fidelity 

using the interatomic force constants obtained from ab-initio simulation.  Because the details 

of interatomic interaction are treated quantum mechanically in ab-initio, no specific 

analytical model is needed to discern the force constants.  Consequently, the empiricism of 

the earlier methods is avoided to a large extent.   

 

Ab-initio based phonon distributions have been used to produce thermal scattering libraries 

for a wide range of materials (e.g. in [10]-[13]) and were found to generate good agreement 

against experimental heat capacity and cross section data.  The scattering cross section of 

graphite, in particular, has been investigated extensively using ab-initio techniques [12],[14].  

As shown in Fig. 1-6, the cross section calculated from the ab-initio ρ(ω) agrees quite closely 

with measured data once the 1-phonon coherent inelastic component is included.  The 

ENDF/B-VII standard libraries, by comparison, are based on the Young-Koppel density of 

states [15], which was obtained by fitting force constants to the specific heat of graphite 

between 100 K and 1000 K.  Coherent inelastic effects are absent from all ENDF/B-VII cross 

section libraries.                      
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Fig. 1-6.   Comparison of the calculated thermal inelastic scattering cross section of graphite at 300 K, 

including 1-phonon coherent effects [14], versus measured data from Steyrel [16], Egelstaff [17], BNL 

[18], and Zhou [19],[20].   Triangles correspond to reactor-grade graphite while diamonds indicate 

pyrolytic graphite.     

 

 

Noting the segregation of the experimental cross section data into two distinct clusters based 

on microstructure (pyrolytic vs. reactor-grade), one may observe that the total inelastic 

scattering cross section of reactor-grade is substantially higher than that of pyrolytic at 1E-3 

eV.  Since reactor-grade graphite contains multiple phases that differ in interatomic binding, 

disparities are indeed anticipated in the total cross section, as well as in the details of the 

differential energy spectra. 



www.manaraa.com

 15 

 

To summarize, the current state of knowledge regarding inelastic thermal neutron scattering 

in graphite is as follows: 

 

 Coherent and incoherent effects are both significant, with coherent inelastic scattering 

comprising as much as 20–25 % of the room-temperature cross section between 1E-5 

and 5 eV.   

 The total inelastic scattering cross section of reactor-grade graphite is about 70% 

larger than that of pyrolytic graphite at 1E-3 eV.  Differences are expected in the 

differential energy spectra as well.         

 

1.5   Motivation and objective 

 

As discussed in the previous section, the thermal scattering cross section of perfect, 

crystalline graphite has been investigated and benchmarked using ab-initio.  While the 

thermal scattering impact of single and di-interstitial defects has also been explored using 

static ab-initio simulation [21], the consequences of heavy irradiation and realistic defect 

formations have not yet been examined computationally.  This is due partly to the loss of 

symmetry that accompanies irradiation defects or imperfections, and partly to the difficulty 

of modeling complex defect clusters using a time-independent structural optimization 

approach.  Specifically, for atomistic simulation techniques such as ab-initio that rely on 

crystallographic symmetry to computationally simplify the interatomic force calculations, the 
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presence of defects can result in a many-fold increase in the cost of evaluating the cross 

section, particularly when the simulated system is large.  Size limitations are especially 

detrimental to irradiation studies since a large supercell is typically needed to observe 

properly the defect formation processes that arise during high-energy displacement cascades.  

In the case of time-independent ab-initio simulation, an initial guess of the defect structure 

would be required as input because the simulation technique does not allow for dynamical 

evolution of the system.              

 

In contrast to the static ab-initio approach, classical molecular dynamics (MD) simulations 

run just as efficiently with imperfections as without, and are also suitable for dynamically 

modeling the defect accumulation processes responsible for lattice damage in a reactor 

environment.  Classical MD, based on a well established interatomic potential function, 

therefore presents a more predictive (and computationally less intensive) approach for 

analyzing changes in the material structure and properties due to cascade buildup.  

Furthermore, Fourier transform techniques can be utilized to evaluate the thermal neutron 

scattering cross section directly from the atomic positions, without necessarily invoking the 

approximations embedded in codes such as LEAPR.  This is possible through the use of 

statistical time correlation functions, which serve as a link between fundamental microscopic 

variables and measurable material properties.      

 

The objectives of this work are to investigate the thermal neutron scattering cross section of 

graphite using classical MD time correlation functions, and to initiate an examination of the 
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impact of cascade-induced damage on the cross section.  As will be demonstrated in Chapter 

3, achieving these objectives also entails the development of quantum corrections to the 

classical Van Hove functions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation Section (Next) 
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Chapter 2  

Molecular Dynamics 
 

2.1   Overview  

 

Molecular dynamics (MD) is a simulation technique in which an interacting atomic system is 

evolved for a specified period of time under the laws of classical physics.  Two preconditions 

are necessary in order to operate in the classical framework, namely that: 

(1) Atoms can be treated as point masses, the motions of which are governed by 

Newtonian mechanics. 

(2) Electrons are instantaneously in equilibrium with nuclei. 

Item (1) is valid when the thermal de Broglie wavelength is much smaller than interatomic 

spacings in the material.  The thermal wavelength is inversely related to both mass and 

temperature, and so an increase in either quantity will improve the appropriateness of this 

condition.  Item (2) is an excellent approximation due to the vast mass difference between 

electrons and atomic nuclei.    

 

In the scheme of multiscale modeling that is illustrated in Fig. 2-1, MD corresponds to the 

nanoscale; that is, times on the order of nanoseconds and lengths on the order of nanometers 

are accessible in MD.  On a larger scale lie the continuum methods, where the microscopic 

details of atomic motion are averaged and collapsed into macroscopic variables.  This is the 

scale on which laboratory measurements and engineering design commonly take place.  At 
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the smallest scale that is currently practicable, quantum methods and approximations such as 

density function theory (DFT) can be used to investigate the electronic structure in addition 

to the atomic motions.  

 

 

Fig. 2-1.  Overview of multi-scale modeling  

 

Some overlap exists between contiguous methods on the scale.  For instance, the ab-initio 

MD technique combines DFT-based interatomic force calculations with the numerical time 

evolution algorithms and ensemble control of an MD simulation.  One arrives at classical 

MD by invoking the Born-Oppenheimer approximation to collapse electronic interactions 

into a function that depends solely on the atomic positions.  At a larger scale, the atomic 

positions and momenta from MD simulations can be converted into macroscopically 

observable material properties through Green-Kubo type relations [22].  In fact, taking a 
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holistic perspective on multi-scale modeling, it is apparent that macroscopic phenomena 

could, in principle, be modeled from the most basic equations of quantum mechanics with 

few intermediate approximations.  Limitations in computational power severely restrict the 

viability of this ideal at present.  Much of the cost lies in evaluating the potential energy 

function (or Hamiltonian) of the system, along with its associated derivatives.           

 

2.2   Potential Function 

2.2.1  Introduction 

 

Atomic interactions are modeled in MD using an empirically fitted potential energy function, 

the form of which is grounded in the specific nature of the system.  In general, the potential 

function may be written as an expansion over 1,2,3, … N-body terms as: 

                                  ...,,, 321  
  i ji

kji

kjii ji

ji

i

i rrrVrrVrVU


                      (2.1)            

where the potential is labeled an N-body potential when the expansion is carried out to VN.  

 

Three-body or greater terms are generally needed to reproduce the physical properties of a 

covalent system accurately.  An ionic system would require potential terms stemming from 

Coulombic effects as well as electronic binding, whereas certain liquid or solid state systems 

of noble gas atoms (e.g. argon) may only exhibit Van der Waals interactions, which can be 

represented with a simple 12-6 Lennard Jones formula [23].                   
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Atomic interactions in graphite cannot be condensed into a simple 2-body potential.  This is 

because the covalent interactions of graphite depend not only on the interatomic distances, 

but also on bond angles, torsional angles, and the coordination number.  In other words, the 

potential energy is contingent upon the binding environment, and, for a given atom, the 

number of neighbor atoms affects the strength of each bond.  It was this realization that led 

Abell [24] and later workers to develop the class of potentials known as bond order 

potentials.  The theoretical basis for the bond order potentials lies in the derivation, from 

quantum mechanical equations, that: 

                                                   
k

AkkRkk VpqVZE                                                     (2.2) 

where E is the binding energy per atom, Zk is the number of atoms in the k
th

-neighbor 

coordination shell, kp  is the bond order term, q  is the number of valence electrons per atom, 

and AkV  and RkV  are functions describing interatomic attraction and repulsion respectively.  

While the summation of Eq. (2.2) encompasses, in theory, all atoms within the system, it is 

common practice to limit this summation only to the first neighbor shell for reasons of 

computational efficiency (though the bond order term, pk, may include contributions beyond 

the first shell).  This restriction is known as the nearest neighbor approximation, and despite 

its seeming severity, it has been utilized successfully over the years to reproduce the 

observed physical properties of many systems.  Analogously to density functional theory, the 

justification for the nearest neighbor approximation lies more in its proven utility rather than 

in any rigorous physical argument.   
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2.2.2 REBO Potential 

 

The 2
nd

 generation reactive empirical bond order (REBO) potential [25] is presently one of 

the most sophisticated potential functions available for hydrocarbons.  As with the Abell [24] 

and Tersoff [26] potentials, interatomic interactions in REBO are modeled as a sum of 

attractive and repulsive terms where the attractive part is modified by a bond order function. 

Mathematically: 

                                            



i ij

ijAijijRijC rVbrVrfE                                      (2.3) 

where VR and VA are pairwise repulsive and attractive functions, ijb  is the bond order term, 

ijr  is the scalar distance between atoms i and j, and  ijC rf  is a cutoff function that smoothly 

attenuates the potential energy to zero beyond the first neighbor shell.  The repulsive and 

attractive components are given by: 

                                             1 expR ij

ij

Q
V A r

r


 
   
 
 

                                            (2.4)                                               

                                                           
1,3

expA n n ij

n

V B r


                                                (2.5)                                                  

in which A, Q,  , nB , and n  are empirical fitting constants.  The exponential form of these 

functions is derivable from quantum formulae, but the  ijrQ /  prefactor in VR was included 

with the specific intent of preventing atoms from approaching each other too closely during a 

high-energy collision (noting that the exponential terms saturate to a constant as rij  0).   

 

The bond order factor is comprised of four terms: 



www.manaraa.com

 23 

                                                      DH

ij

RC

ijjiijij bbbb   

2

1
                                    (2.6) 

where ijb   and jib   account for bond angles, RC

ij  is the bond conjugation term, and DH

ijb  

represents the dihedral (torsional) contribution.  The explicit forms of these functions are 

more intricate than the pairwise terms and are described in detail in the original paper [25].  

The individual components of Eq. (2.6) share a common theme, however, in that each varies 

with the local atomic coordination number.                 

 

2.3   REBO corrections 

 

Short-ranged empirical potentials are known to suffer from deficiencies that particularly 

impact anisotropic materials such as graphite.  First and foremost is the absence of the long-

ranged, interplanar Van der Waals interactions binding together graphite layers.  Without an 

additional potential energy term to at least approximate the effects of these interactions, the 

graphite structure will be unstable.   

 

This scenario is illustrated graphically in Fig. 2-2.  Rather than remaining stationary, entire 

planes of atoms can drift along the a-b axes or oscillate along the c-axis.  As will be 

demonstrated later, long-ranged interactions are also responsible for low-frequency lattice 

vibrations that significantly affect the thermal neutron scattering properties of graphite.               
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Fig. 2-2.  Snapshots of an MD graphite supercell under the short-ranged REBO potential model.  

Distortion of the graphite planar structure occurs in the absence of long-range atomic interactions.   

 

The REBO potential, being a generalized hydrocarbon potential, was fitted to the static (zero 

temperature) properties of a range of hydrocarbon systems.  Because the fitting procedure 

was performed at 0 K, there is no guarantee that temperature-dependent properties of the MD 

system will conform to experimental data, and adjustments may be needed to achieve 

agreement.  Adjustments to the REBO potential, as applied to graphite, are expected to 

include the implementation of a Van der Waals potential as well as corrections to the 

empirical fitting parameters.  

2.3.1 Long Range Interactions 

 

The structural effect of the long-ranged interactions is to maintain the rigid, layered 

arrangement of carbon atoms in graphite. Therefore, associated modifications to the REBO 

potential should work to counteract the bending of the layers that is obvious in Fig. 2-2.  A 

straightforward approach is to add an explicit Van der Waals term, which ubiquitously takes 

the form of a Lennard-Jones potential: 
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                                             (2.7) 

in which ε and σ are empirical parameters that specify the depth and position of the potential 

energy well.  Stuart, Tutein, and Harrison have recommended values of ε = 0.00284 eV and σ 

= 3.4 Å for graphite [27], where σ is approximately equal to the interlayer spacing.  This 

parameterization is used in the present work.   

 

At short distances (e.g. between 1
st
 or 2

nd
 neighbor shells), the Lennard-Jones potential 

interferes with the covalent terms of REBO by generating a strong repulsive force between 

atoms.  Thus, the L-J potential is modified by a smooth, “reverse” cutoff function that tapers 

off the long-ranged potential between 3.40 Å and 3.00 Å, with no long range component 

present below 3.00 Å.  These limits were chosen so as to be inclusive of nearest- neighbor 

interplanar interactions at (0,0,+c/2) or (0,0,-c/2).   

As in prior versions of the modified REBO potential [28] , the standard cutoff function is 

replaced with an anisotropic function, defined by: 

                                                         TzfrfTzrf cijcijc ,, '

,

'                                         (2.8) 
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                                            (2.9) 

in which K is an empirical fitting parameter, z is the c-axis displacement, and Δd is the 

interlayer spacing.  This modification, which is grounded in the anisotropy of the graphite 
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structure, enables regulation of the c-axis mean-squared displacement independently of the 

in-plane displacements.  For small displacements along the c-axis,  ' ,cf z T  brings about a 

parabolic increase in energy with respect to the displacement.       

 

The parameter K was fitted to the out-of-plane mean squared displacement (MSD) for 

graphite, where the components of MSD are defined by: 
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                        (2.10)                                                                              

in which t

nr  refers to the instantaneous displacement of particle n at time t, N is the total 

number of particles, To is the initial time step, T is the final time step, and (T-To) is the total 

number of time steps over which MSD is calculated. 

 

Multiplying  ' ,cf z T  through the pairwise attractive and repulsive terms gives a number 

with units of energy, and one would expect, on physical grounds, that:  

                                                 dijAijijRc ErVbrVT
d

f 






 
~,

2

'                                      (2.11) 

where EΔd is the interlayer binding energy of graphite, known experimentally to be about 50-

60 meV/atom [29].  Optimization of K based on an initial guess from Eq. (2.11) results in a 

value of 0.003, which fits experimental MSD data quite well as shown in Fig. 2-3.  The in-

plane MSD is not significantly affected by  ' ,cf z T , though it is, of course, influenced 

by  c ijf r . 



www.manaraa.com

 27 

 

Fig. 2-3.  In-plane (top panel) and out-of-plane (bottom panel) mean squared displacement in graphite.    

The in-plane MSD is compared against the x-ray diffraction measurements of Fitzer & Funk [30] and 

lattice dynamical calculations from Firey [31].   Out-of-plane MSD is shown alongside theoretical upper 

and lower bounds proposed by Kelly [32] as well as measurements performed by Kellet [33] and Post [34].         

 

 

2.3.2 REBO pairwise adjustments 

 

The second generation REBO potential, in its published form, is defined solely on the basis 

of distances, angles, and local coordination numbers.  Parameterization of the potential was 

originally carried out by fitting to a set of physical properties (zero-point energy, bond 
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energy, bond distance, etc.) as determined for various hydrocarbon configurations.  Notably, 

the fitting routine was limited to the static (0 K) properties of perfect lattices such that 

considerations of thermal motion were absent. 

 

In the REBO formulation (and many others), a cutoff function limits interatomic interactions 

to the 1
st
 neighbor shell.  It is known, however, that 2

nd
 neighbor atoms contribute 

significantly to the graphite potential.  For example, Nicholson and Bacon [35] provide 

values for the principal force constants of the first two neighbor shells of graphite as listed in 

Table 2.1. 

 
Table 2.1.   Principal force constants of graphite  

                    in N/m, from Nicholson and Bacon 

                 

 1st shell 2nd shell 

K11 323.36 -33.533 

K22 279.95 91.44 

K33 231.95 -38.533 

           

 

The 2
nd

 neighbor force constants are roughly 10 – 33% of the magnitude of the 

corresponding 1
st
 neighbor values, indicating that the 2

nd
 neighbor interactions cannot be 

discounted.  In practice, agreement between the REBO potential and measured physical data 

is achieved by effectively collapsing the 2
nd

, 3
rd

, … neighbor interactions into the 1
st
 

neighbor fitting parameters.  Strictly speaking, such a parameterization is valid only if the 

influence of the longer-ranged interactions is temperature-invariant.    
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At nonzero temperatures, it is expected that thermal vibrations and lattice expansion would 

perturb the longer-ranged interactions.  These perturbations can be addressed by introducing 

a temperature-dependent adjustment factor that is fitted to the thermal expansion coefficient.  

Essentially, an adjustment factor is applied to the pairwise coefficients as: 

                                                TTCATA o exp                                               (2.12)                                                       

                                                            TTCBTB nonn exp,                                         (2.13)                                                       

which accounts for deficiencies in the ability of the nearest-neighbor potential to accurately 

model the true many-shell potential.  Here, oA  and onB ,  are the standard REBO pairwise 

coefficients and C(T) is a temperature-dependent adjustment factor, fitted to a sigmoidal 

function of the form: 

                                   
 








 




d

TT

b
cTC

o

o

exp1

)(                                          (2.14)                                     

in which co, b, d, and To are adjustable parameters.  Using nonlinear least-squares regression 

(see [36] for more details), the parameter values shown in Table 2.2 were obtained, which 

correspondingly alter the thermal expansion behavior of the MD system  to reflect the true 

expansion coefficient of graphite, as demonstrated in Fig. 2-4.    

 

        Table 2.2.  Parameters for Sigmoidal Fit to C(T). 

                  b            =      4.769E-06  Å/K          
                  d            =           389.7       K  

                  To            =           1410        K  

                  co            =     -1.681E-06  Å/K   
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Fig. 2-4.  Impact of pairwise REBO adjustment factors on thermal expansion.  The shaded region 

represents the total span of measured data reported by Billings [37], Steward [38] and Bailey [39]. 

 

 

 

2.4   Correlation Functions 

 

2.4.1   MD implementation 

 

 

Correlation functions serve as the principal means by which material properties of relevance 

to engineering design can be related to the microscopic details of atomic motion.  Aside from 

the thermal scattering correlation functions proposed by Van Hove, which constitute the 

foremost subject of development in the present work, there exists a class of Green-Kubo 

relations linking transport coefficients to the integrals of correlation functions.  Green-Kubo 
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relations are discussed further in Appendix A, in conjunction with their application to the 

specific property of the in-plane thermal conductivity of graphite.      

 

The correlation of two stochastic random variables x and y is defined, in general terms, by a 

phase space integral of the form [40]: 

                                        dxdyttyxfxyttEttCxy  








 21

*

2

*

121* ,;,, yx                       (2.15) 

where x and y are construed as ensembles of possible outcomes, E{} is the expectation value, 

x and y represent trial outcomes, and  21,;, ttyxf  is the probability density of outcomes x 

and y occurring at times 1t  and 2t respectively.  The implementation of this somewhat abstract 

formula in the context of an MD simulation is elucidated by considering the statistical 

mechanical interpretation of MD.  From that perspective, the state of the MD system at time t 

corresponds to a single point within the phase space of atomic positions r


 and momenta p


.  

As the system evolves in time, transitions continually occur from one state to another, and the 

system history forms an increasingly long path in phase space that stretches from the initial 

state to the final state.  While the system may pass through any accessible phase space point, 

certain states are more probable than others and so the calculation of averaged quantities 

must be weighted appropriately (as by the density function,  21,;, ttyxf , of Eq. (2.15)).    

 

Under the assumption of ergodicity, which is fundamental to the legitimacy of the MD 

method itself, the phase space average of Eq. (2.15) may be written as an equivalent time 

average of the form [41]: 
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                                                           dttytx
t

C

t

t
xy  


0

*

*

1
lim                                       (2.16)                     

where   is referred to as the delay time.  Technically, the upper integration limit must 

approach infinity to ensure that the time evolution of the MD system encompasses all 

possible phase space configurations.  Because real simulations cannot be infinite in duration, 

the system is taken to be adequately sampled after some finite time interval that depends on 

the initial state and intrinsic material properties.  MD simulations also progress in discrete 

time steps and Eq. (2.16) therefore reduces to: 

                                                      
 

   
 

*

*

1

1
L

xy k k

k

C x t y t
L



 
 

                                 (2.17)                        

in which  L  -- the number of steps available for averaging -- varies with the delay time.  

The relevant relationship is given by: 

                                                                tot

k

L L
t


                                                        (2.18) 

where Ltot is the total number of steps and must be an integer multiple of tk.  A corollary of 

Eq. (2.18) is that the statistical uncertainty in  *xyC   increases as a function of due to the 

linear drop in sample size.  Hence, the time scale of the MD simulation may need to greatly 

exceed the characteristic time scale of the phenomenon under investigation, depending upon 

the desired degree of certainty.   

 

The reader should be aware that correlation functions (in the present work and in general 

scientific literature) are often written using the following shorthand notation: 
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                                                             0xyC f x y t                                                 (2.19) 

where     0f x y t  is defined as some function of the thermal average of the product 

x(0)  y(t).  Two distinct features of Eq. (2.19) are noteworthy: 

1. The time origin, t = 0, is arbitrary given that the system is in thermal equilibrium.  

Therefore, t actually refers to the delay time.    

2. If the ergodic hypothesis holds, then the system is assumed to sample all accessible 

thermal states in its time evolution, and the thermal average,    0x y t , is wholly 

identical to the time average of Eq. (2.17).            

 

2.4.2   Cross-Correlation Theorem 

 

The calculation of correlation functions from Eq. (2.17) ordinarily entails on the order of N
2
 

operations.  When the signal size is large (more than, say, 10
4
 – 10

5 
points), this represents a 

significant computational burden, especially when multiple evaluations of the correlation 

function are required.  Through implementation of the cross-correlation theorem, the number 

of operations can be reduced to NlogN with no loss in generality.  As will be demonstrated 

later, cross section calculations can involve the computation of many thousands of correlation 

functions, and so the efficiency gain can be tremendous.                

 

Extending Eq  (2.16) into the negative time domain and replacing the variables in the 

integrand with their corresponding Fourier transform expressions: 
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               *exp 2 ' exp 2 ' 'x y X i t d Y i t d dt        
  

  

 
    

 
                  (2.20)                                               

where x*y is the cross correlation of x and y, and X and Y are their Fourier conjugate 

variables.  Combining the integrals on the RHS of Eq. (2.20),  

                    * ' exp 2 exp 2 ' 'x y X Y i t i t d d dt        
  

  

         

                             * ' exp 2 ' exp 2 ' 'X Y i it dt d d         
  

  

 
  

 
    

                            * ' exp 2 ' ' 'X Y i d d         
 

 

                

                           * exp 2X Y i d    




                                                                  (2.21) 

which is simply the inverse Fourier transform of the product of the individual transforms of x 

and y.  If x = y, then Eq. (2.21) is equivalent to the Wiener-Khinchin theorem: 

                                                      
2

exp 2x x X i d   




                                     (2.22) 

which yields the autocorrelation of x. 

 

 

 

 

 

 

 

 

 

 

 

Equation Section (Next) 
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Chapter 3  

Thermal Neutron Scattering 
 

 

3.1   Theory  

3.1.1  Derivation from First Principles 

 

 

In the thermal scattering regime, the neutron and scattering system both must be treated 

quantum mechanically.  This is true because the wave properties of the neutron influence the 

scattering phenomenon (as is most obvious in coherent scattering), and also because the 

phonon energy exchange between the neutron and lattice is discretized in accordance with 

the energy levels of a network of quantum harmonic oscillators.         

 

The state of the neutron is given by the Schrödinger equation [42]: 

                                       
 

     2
,

, , ,
2

r t
i r t V r t r t

t M


 


   


                            (3.1)                           

where  ,V r t is the potential and  ,r t  is the wave function, the square of which is 

proportion to the probability of finding the particle at location r at time t.  It can be shown 

that the wave function of a free particle (such as a traveling neutron), for which  ,V r t  = 0, 

is given by: 

                                                
 

 3/2

1
, exp

2
free r t ik r i t 


                                      (3.2) 
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where k is the wave vector.  The state of the scattering system,  ,r t , is also governed by 

the Schrödinger equation; in the time-independent case this becomes a partial differential 

eigenvalue equation over 3(N+Ne) variables, where N and Ne and the number of nuclei and 

electrons respectively.   Solving  r  for a system of interacting atoms is the subject of the 

ab-initio technique and density functional theory, in which the dimensionality of the problem 

is reduced considerably through a series of approximations.  In general, however, the 

evaluation of  ,r t  is an intractable endeavor that, for the purposes of the present work, 

shall be deemed surmountable only in principle.   

 

Interaction between the neutron and scattering system alters the physical state of both entities, 

and the neutron scattering process can be conceptualized in terms of a differential cross 

section [43]: 

                                                    
, ', '

''

1
k k

k

d
W

d d  
 






 
 

   
                                         (3.3) 

that is proportional to the probability of transitioning from state ,k   to the set of 

states ', 'k  , where 'k  is constrained to lie within the solid angle dΩ.  If the transition 

matrix, W, is defined as the number of transitions occurring from ,k   to ', 'k   per 

second, then the incident flux, Ф, appears as the normalization factor that renders Eq. (3.3) an 

intrinsic property.  An analytic expression for W may be obtained by invoking Fermi’s 

Golden Rule, which states that: 
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2

', ', '
'

2
' 'kk k

k

W k V k
 


  


                                             (3.4) 

                                                             * *

' 1 2...k k NV drdR dR dR       

where V is the nuclear potential acting on the neutron and ρk’ is the density of momentum 

states at k’ about dΩ.  To proceed further, an explicit expression for the neutron-nucleus 

potential is needed.  The neutron, being an uncharged particle, interacts with the nucleus 

through the strong nuclear force, which is negligible beyond femtometer-scale separations.  It 

is reasonable, therefore, to represent the potential as a delta function centered about the 

position of the nucleus as: 

                                                                     V r a r                                                     (3.5) 

where, for a single fixed nucleus, the constant a is given by the exact expression: 

                                                                  
22 b

V r r
m


                                               (3.6) 

in which b, the scattering length, is a property of the nucleus that depends primarily on the 

details of the actual neutron-nucleus potential.  The scattering length exhibits almost no 

systematic correlation with atomic number or mass number, and its value may be considered 

constant in the thermal scattering regime – a consequence of the extremely short-ranged 

nature of the potential.  The form of the potential given in Eq. (3.6) is referred to as the Fermi 

pseudopotential, and its justification follows from the fact that, in conjunction with Fermi’s 

Golden Rule, the necessary outcome of isotropic scattering is obtained for a single fixed 

nucleus.   
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Combining the results of Eqs. (3.3)- (3.6), the differential cross section becomes: 

                                            
2

'

'
' expj j

j

d k
b i R

d k 


  



 
  

 
                                (3.7)

where κ = k’ – k is the change in the neutron wave vector due to scattering.  Extension of this 

formula to the double differential cross section is straightforward – the energy of the 

scattering system plus neutron must be conserved during the scattering process; that is, 

                                                          ' 'k kE E E E                                                          (3.8) 

and the conservation of energy condition may be introduced as a delta function: 

                      
2

2

' '

'

'
' exp

'
j j k k

j

d k
b i R E E E E

d dE k
 

 


   



 
     

 
               (3.9)      

which is automatically normalized over energy.  Now, at any given time, a realistic scattering 

system exists in one of many possible states (i.e. assumes one of an ensemble of states that 

are all consistent with the relevant conservation conditions).  A well-known result of 

statistical mechanics [44] is that, at a constant temperature T, the probability of finding the 

system at energy Eλ is: 

                                           
   

 

exp exp

exp

B B

B

E k T E k T
p

Z E k T

 






 


                                  (3.10) 

where Z is the partition function.  Converting the delta function of Eq. (3.9) to integral form 

through the relation: 

                        
 

 '

' '

1
exp exp

2
k k

i E E t
E E E E i t dt

 

  






 
     

 
                (3.11)                        

and noting that: 
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ˆ

exp exp
iE t iHt  

   
   

   
                                        (3.12) 

where Ĥ is the Hamiltonian of the scattering system, the double differential cross section may 

be condensed into the following useful form: 

                
2

' '

, '

'
exp 0 exp exp

' 2
j j j j

j j

d k
b b i R i R t i t dt

d dE k


  







          
             (3.13) 

with the atomic positions now defined as Heisenberg operators of the form: 

                                                 
ˆ ˆ

exp expj j

iHt iHt
R t R

   
    

   
                                      (3.14) 

in which the details of the scattering system are confined to the position operator and 

scattering lengths.  Significantly, the nuclear component of the differential cross section has 

been separated completely from the lattice dynamical component.  This consequence of the 

Fermi pseudopotential approximation enables one to speak of thermal neutron scattering in 

terms of the dynamics of the scattering system.   

 

The fundamental implication of Eq. (3.13) is that the double differential cross section is 

derivable from the time-dependent atomic positions of the scattering system.  It should be 

emphasized that the position vectors of Eq. (3.13) are, in fact, quantum mechanical operators 

that do not directly correspond to the classical atomic positions. This constitutes the primary 

obstacle in linking Eq. (3.13) to classical MD trajectories.      
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Assuming that the system of interest contains a large number of nuclei, which is nearly 

always true in practice, the scattering length product may be substituted with a corresponding 

averaged value: 

                                                                 
' 'j j j jb b b b   

and, if no correlations exist among the scattering lengths of different nuclei, then: 

                                              
2

' 'j j j jb b b b b            if 'j j                                (3.15) 

                                              2

'j jb b b               if  'j j                                            (3.16) 

thereby causing Eq. (3.13) to split into two terms: 
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               (3.17)           

                        
22'
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



              

Now, defining 
2

4coh b   and  224inc b b   , the two terms on the RHS are seen 

to correspond to the coherent and incoherent cross section respectively: 
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               (3.19) 

in which the incoherent part involves only the (self) correlation between the position of an 

atom at t = 0 and the position of the same atom at a later time.  The coherent part accounts for 



www.manaraa.com

 41 

self correlations in addition to correlations among all of the distinct atomic pairs in the 

system.   

 

3.1.2  Thermal Scattering Correlation Functions 

 

Defining the intermediate scattering function as: 

                                       '

, '

1
, exp 0 expj j
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I t i R i R t
N

                                     (3.20) 

and further defining the scattering law, or dynamic structure factor, as the time Fourier 

transform of the intermediate function: 
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Eqs. (3.18) and (3.19)can be expressed as: 
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with the total cross section equal to: 

                                       
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                                 (3.24) 

where the scattering law has been divided into a self and distinct part as: 

                                                , , ,s dS S S                                                       (3.25) 
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in which the self term (associated with incoherent effects) arise from the 'jj   portion of the 

summation while the distinct term (associated with coherent effects) arise from all 'jj   

terms.     

 

The inverse transform of Eq. (3.20) in position yields the dynamic pair correlation function: 

                                     3

1
( , ) , exp

(2 )
G r t I t i r d  







                                            (3.26) 

                                                  3
, exp

(2 )
S i r t d d     







     

which is specifiable in terms of measurable quantities and may be endowed with a simple 

physical interpretation in the absence of quantum effects.  This is apparent from the full 

expression for ( , )G r t :                           

              '3
, '

1
( , ) exp exp 0 exp

(2 )
j j

j j

G r t i r d i R i R t
N

   






 
            

 
          (3.27) 

Combining the complex exponential terms and utilizing the integral form of the Dirac delta 

function, this formula reduces to:                                  

                                       '

, '

1
( , ) 0 ' 'j j

j j

G r t r R r r R t dr
N

 




                          (3.28) 

and if the position operators  ' 0jR  and  jR t  are taken as the classical atomic positions (i.e. 

allowed to commute), then a straightforward integration of Eq. (3.28) gives: 

                                        '

, '

1
( , ) 0cl

j j

j j

G r t r R R t
N

                                          (3.29) 
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where, for each atom j’,     ' 0j jr R R t    is the probability that an atom j is located at 

position r  at time t, given that the atom j’ was initially at the origin.  By extension, 

    ' 0j j

j

r R R t    is the probability of finding any atom at position r  at time t, 

given an atom j’ initially at the origin.  This expression for G(r,t) can be defined so as to 

include all possible atomic combinations (resulting in G(r,t)), to include only 'j j  terms 

(resulting in Gd(r,t)), or allowing solely for 'j j  terms (resulting in Gs(r,t)). 

  

Classical analogues of I(κ,t) and S(κ,ω) similarly follow by allowing the atomic positions to 

commute.  The Fourier transform relations among G(r,t), I(κ,t) and S(κ,ω) are valid in both 

the classical and quantum cases.  Significantly, G(r,t) and I(κ,t) are complex functions, 

whereas G
cl
(r,t) and I

cl
(κ,t) are always real.  The complex nature of these functions serves to 

introduce asymmetry into S(κ,ω).               

      

Physically, the scattering law may be conceptualized in terms of lattice waves.  Associated 

with any solid-state array of atoms is a dispersion relation, ω(k), detailing the allowed 

frequencies of vibrational modes along wave vector k.  S(κ,ω) is effectively proportional to 

the “weight” of  these vibrational modes in relation to neutron scattering interactions.  Thus, 

for a thermal neutron propagating through the material, the probability of scattering from 

wave vectors k to k’, with an accompanying energy exchange of  , is proportional to 

S(κ,ω).    
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In Ss(κ,ω), this weight is modulated by the density of allowed states (a property of the 

material structure) as well as the occupancy factor, which varies with the system temperature.  

For each atom in the system, both properties are determinable from the position of that 

individual atom as a function of time.  Sd(κ,ω), on the other hand, includes interference 

effects from the correlated motions of atoms occupying different lattice sites.  Thermal 

occupancy is still an important factor within Sd(κ,ω); however, there no explicit relationship 

between Sd(κ,ω) and the bulk density of states.        

  

3.1.3 Symmetry Relations 

 

From the properties of Fourier transforms, it can be shown that the classical scattering law is 

symmetric in ω and therefore fails to satisfy the detailed balance equation.  Relations of 

detailed balance are, fundamentally, a product of microscopic reversibility at thermal 

equilibrium.  For processes that alter the energy state of the system, detailed balance can be 

expressed mathematically as: 

                                                     ' ' 'p E f E E p E f E E                                  (3.30)     

where p(E) is the probability of state E and  'f E E  represents the transition probability 

(or rate) from states E to E’.  In the thermal scattering of neutrons, phonons serve as the 

relevant vehicle of energy exchange.  Therefore, p(E) can be identified as the Boltzmann 

factor, and  'f E E becomes the scattering law associated with an energy exchange of 

E’-E.  Here, the sign of the energy exchange indicates whether phonons have been absorbed 

or emitted by the neutron.  Substituting the Boltzmann factor and scattering law into Eq. 
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(3.30), the detailed balance relation governing thermal neutron scattering processes is 

recognized to be: 

                                                  , exp / ,BS k T S                                           (3.31)                 

which, in terms of the Van Hove formula of Eq. (3.21), arises numerically through the 

balance between the real (symmetric) and imaginary (anti-symmetric) parts of the 

intermediate function, where the imaginary part is associated with quantum effects.  The 

scattering law itself can be broken up into symmetric and anti-symmetric parts as: 

                                                  , exp ,RS i t I t dt                                              (3.32) 

                                                  , exp ,IS i i t I t dt                                              (3.33) 

where  ,S    is the symmetric component and  ,S   is the antisymmetric component.  

These are related to the full scattering law by: 

                                                    
1

, 1 exp ,
2 B

S S
k T


   

  
    

  
                             (3.34)     

and: 

                                                    
1

, 1 exp ,
2 B

S S
k T


   

  
    

  
                             (3.35) 

Combining Eqs. (3.34) and (3.35) with the detailed balance condition gives:  

                                                     , , tanh
2 B

S S
k T


   

 
  

 
                                      (3.36) 

Expanding the hyperbolic tangent, taking the inverse Fourier transform, and recombining the 

resulting terms, it can also be shown that: 



www.manaraa.com

 46 

                                                      , tan ,
2

I R

B

d
I t I t

k T dt
 

 
  

 
                                    (3.37) 

which is exact, given that IR is the real part of the quantum intermediate function (and not 

simply the classical function).  An important observation is that the real and imaginary parts 

of I(κ,t) are not independent, but rather are related in the manner prescribed in Eq. (3.37).  

This equation (categorized as a fluctuation-dissipation type relation) will prove useful later in 

the development of quantum corrections to the classical scattering functions.                  

 

3.1.4  Moment Rules 

 

The scattering law obeys a series of moment rules of the form [43]: 

                                                          ,
n

nS d S    




                                     (3.38) 

where n is the moment order and, in general: 

                                                          
0

,
n

n

n n

t

S i I t
t

 



 
   

 
                                    (3.39) 

The two lowest order moments of the scattering law possess the unique property of being 

independent of the dynamics or structure of the scattering system.  Namely, for incoherent 

scattering: 

                                                              , 1sd S  




                                                   (3.40) 

and: 
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                                                          
2

,
2

sd S
M


   





                                              (3.41)     

While, for the total scattering law (self + distinct): 

                                                             ,d S S   




                                               (3.42) 

where S(κ) is the static structure factor. Strictly speaking, Eq. (3.41) is premised on the 

validity of the Born approximation as well as the velocity independence of the interatomic 

potential energy [45].  Both conditions are met in all situations considered in the present 

work.  The first-order moment of the distinct scattering law is zero, and so Eq. (3.41) applies 

to the total function as well.  The (always symmetric) classical scattering law also obeys the 

normalization rule of Eq. (3.40), but, of course, has no nonzero odd moments.  Instead, the 

classical function conforms to a second-order relation of the form: 

                                                            
2

2 , B
s

k T
d S

M


   





                                      (3.43) 

which is independent of , as must be true in the classical limit.   

 

3.1.5  Differential Cross Section from S(κ,ω) 

 

Once I(κ,t) is known, the scattering law follows from the transformation relation of Eq. 

(3.21), at which point S(κ,ω) has dimensions of time or, equivalently, inverse frequency.  It is 

standard practice throughout much of the thermal scattering community to work with the 

dimensionless function S(α,β), where:                                     
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2 2 ' 2 '

2 B B

E E EE

Mk T Ak T

 


 
                                       (3.44)                          

                                                         
'

B B

E E

k T k T





                                                     (3.45)                               

are the dimensionless momentum and energy transfer respectively [46], where μ is the cosine 

of the scattering angle.  S(α,β) is related to the original scattering function through a simple 

scaling factor as:                  

                                                            , ,Bk T
S S                                                 (3.46)                             

and the differential cross section is then succinctly expressible as: 

                                               
 

 
, ', '

,
' 2

b

B

d E E E
S

dE d k T E

  
 


                                      (3.47)                            

By integrating the double differential cross section over μ and performing a transformation of 

variables, the single differential spectra are seen to be given by:      

                                                  
 

 
max

min

, '
,

' 4

b
d E E A

S d
dE E





 
                                        (3.48)                       

where A is the scatterer-to-neutron mass ratio and the limits of integration are: 

                                                      min

' 2 '

B

E E EE

Ak T


 
                                                  (3.49)                         

                                                      max

' 2 '

B

E E EE

Ak T


 
                                                 (3.50)                                    

Integrating Eq. (3.48) over all secondary energies yields the total inelastic scattering cross 

section:  
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                                                       
 

0

, '
'

'

d E E
E dE

dE






                                                (3.51) 

which is readily determinable experimentally.  It should be emphasized that the detailed 

dynamics of the scattering system are containing within S(α,β), and, as with all integral 

quantities, information is lost in moving from S(α,β) to σ(E,E’) to σ(E).  Benchmarking will 

therefore be carried out at all stages of the S(α,β)  σ(E) reduction. 

 

3.2 Computational Methods 

 

The standard methodology for evaluating the thermal neutron scattering cross section is to 

make use of the Gaussian and incoherent approximations to arrive at an analytic form of 

Ss(κ,ω).  This is the procedure implemented in the LEAPR module of NJOY [9], for instance.  

The utility of this approach is that the scattering law is made solely dependent upon the 

phonon density of states, ρ(ω), with the detailed time evolution of the system being of no real 

consequence.  Thus, the problem of calculating the scattering law is transformed into the 

simpler task of determining ρ(ω) accurately.  Of course, since the incoherent approximation 

limits the calculation to Ss(κ,ω), coherent inelastic effects are intrinsically excluded.  This is 

not a serious limitation for predominantly incoherent scatterers such as hydrogen, but certain 

atoms (including carbon) do exhibit strong coherent effects.  In the specific case of graphite, 

coherent scattering is responsible for as much as 20 – 25 % of the thermal inelastic scattering 

cross section at room temperature.     

 



www.manaraa.com

 50 

Two distinct avenues exist for the computation of S(κ,ω) through MD simulation.  In one, the 

density-density correlation function is evaluated from the (classical) time-dependent atomic 

positions, and important quantum effects are added through some imposed correction.    In 

the other, ρ(ω) is extracted from the MD velocity autocorrelation function and Ss(κ,ω) 

follows after invoking the Gaussian and incoherent approximations.  The proposed 

procedures are summarized in Fig. 3-1.   By no means is the velocity autocorrelation function 

the only route to ρ(ω); alternatives will be discussed later in this section.                          

   

 

 

                            Fig. 3-1.  Two approaches to computing S(κ,ω) from basic MD data 
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3.2.1   S(κ,ω) from ρ(ω) 

 

Starting from the basic Van Hove relation: 

                                           
1

, , exp
2

S G r t i r t drdt   






                              (3.52) 

the goal is to express S(κ,ω) analytically as a function of ρ(ω).  In many cases, the self part of 

the dynamic pair correlation function is well approximated by a Gaussian of the form: 

                                                
    

2

3/2 2
2

1
, exp

22
s

r
G r t

tt 

 
   

 

                               (3.53) 

where  2 t  is related to the mean squared displacement by: 

                                                                2 23r t t                                                    (3.54) 

and no assumption has been made about how  2r t  varies with time, which depends upon 

the state of matter of the system.  In fact, Eq. (3.53) is valid for solids, liquids, or gases given 

that the Gaussian functional form is appropriate.  It should be noted that the Gaussian 

approximation of  ,sG r t  is rigorously correct for an ideal gas, or in the limit of extremely 

short or long times.            

 

The Fourier transform of Eq. (3.53) over volume yields a simple analytical form for the 

intermediate function:  

                                                         
 2 2

, exp
2

s

t
I t

 


 
   

 
                                        (3.55)                               
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such that: 
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 
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 
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 
                      (3.56) 

In order to proceed further, a closed expression for the mean-squared displacement is needed.  

To this end, it is assumed that the atoms comprising the scattering system behave as perfect 

harmonic oscillators for which: 

                         
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  
                 (3.57) 

Since ρ(ω) is an even function of ω, the limits of integration can be extended to span the 

entire frequency domain, giving: 
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                       (3.58) 

and therefore:                                 
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  

       (3.59) 

which is equivalent to the form of S(κ,ω) implemented in LEAPR.  Once ρ(ω) is known, the 

computation of S(κ,ω) becomes purely a mathematical exercise.  The problem now hinges on 

the extraction of ρ(ω) from atomistic data, for which two well-established methodologies 

exist – diagonalization of the dynamical matrix and transformation of the velocity 
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autocorrelation function.  A comparison of the relative merits of these approaches is reserved 

for Chapter 4.                      

 

3.2.1.1   Dynamical Matrix 

 

One method of generating the frequency distribution is to evaluate the net forces arising from 

an appropriate set of static displacements.  If one considers the system potential energy as a 

function of the instantaneous atomic positions:          

                                                           1 2 3, , ,..., jr r r r                                                  (3.60)                                           

then the potential energy can be expanded in terms of the displacements from equilibrium, 

{u}, as:                                               
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where Φo is the potential energy of the unperturbed structure, η and θ denote Cartesian axes, l 

is the unit cell index, d is the atomic index (within the selected unit cell), and: 

                                       
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                             (3.62)         

is the force constant tensor acting between atoms d and d’ of unit cells l and l’ respectively.  



www.manaraa.com

 54 

Noting that the second term on the RHS of Eq. (3.61) is zero by definition of “equilibrium”, 

and presupposing a plane wave solution, Newton’s 2
nd

 law can be used to show that: 

                                            
1

, exp
d

u l d u d i t q R l
M

      
 

                            (3.63)            

where M is mass, uη(d) is an amplitude independent of l, and R(l) is the position of unit cell l.  

With {u} as given by Eq. (3.63), an eigenvalue equation of the form:    

                                              2

'

',

; , 'j dj d j

d

q e q D q d d e q  
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                                      (3.64)          

exists between the eigenvectors dje  and the eigenvalues ωj, where the dynamical matrix, D, is 

defined by: 

                     
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 
     
                  (3.65)       

and the phonon density of states is then taken as a histogram over the Brillouin zone of the 

crystal as: 

                                                            j

q BZ

dq q    


                                       (3.66)                       

which may be evaluated numerically through Monte Carlo sampling of reciprocal space 

vectors.  As long as the system lacks crystallographic defects, only the basis atoms must be 

displaced because all other atoms are equivalent by symmetry.  Ab-initio simulation is quite 

feasible in this scenario and generally provides accurate phonon information.  MD 

simulations produce analogous force data and are, therefore, entirely compatible with the 

dynamical matrix approach.                    
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3.2.1.2 Velocity Autocorrelation Function 

 

In situations where the system symmetry is broken (for example, by defects), the interatomic 

force constants are no longer determinable from a small number of displacements, and the 

dynamical matrix can become laborious to formulate.  In principle, any defect reduces the 

system symmetry to P1 (the lowest-symmetry space group) such that every atom in the 

system must be displaced in order to construct the dynamical matrix.  This would be tedious 

in MD and extremely costly in large-scale ab-initio simulations.   

 

Fortunately, the frequency distribution is also extractable from the atomic trajectories at 

equilibrium, such that no artificial manipulations are necessary.  The relevant function is the 

velocity autocorrelation function:      

                                                
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                                   (3.67)                      

and its Fourier transform over time is proportional to the phonon frequency distribution as:      

                                                 exp
3 B

M
C t i t dt

k T
  







                                        (3.68)                                                  

where  jv t  is the velocity vector of atom j at time t.  In signal processing terminology, the 

function C(t) is symmetric in time and the Fourier transform is therefore equivalent to the 

cosine transform, which returns a real function, ρ(ω), as output.  Again, the time origin, t = 0, 

is arbitrary and C(t) should be averaged over all available origins.  The computational cost of 

C(t) is independent of symmetry; therefore, the velocity autocorrelation function is an 

especially efficient vehicle for evaluating the phonon frequency distribution of a damaged 
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system.  As a side note, the diffusion coefficient is proportional to the integral of the velocity 

autocorrelation function over all delay times as: 

                                                              
0

1
0

3
D v v t dt



                                           (3.69) 

where, in practice, the integration is taken until v(0) and v(t) become uncorrelated.  The 

length of the correlated time interval depends on several factors including temperature and 

state of matter.        

 

3.2.2   S(κ,ω) from Atomic Positions 

 

Attention is now directed to the left-hand side of the flowchart of Fig. 3-1, where the atomic 

positions are utilized directly to compute the Van Hove correlation functions.  To evaluate 

the classical version of S(κ,ω) without a-prioi knowledge of the dispersion relation or density 

of states, one could envision the following procedure.  A wave vector is selected, and time-

dependent correlations of particle density are calculated along that wave vector, producing 

the function I(κ,t).  Next, a Fourier transformation operation is undertaken to ascertain the 

frequency content of the density correlations, which defines the allowable vibrational modes 

along vector κ in combination with the associated weight of those modes (i.e. the differential 

area under S(κ,ω) as a function of ω).  Expanding this procedure to a system-wide average, 

one arrives at the scattering law of the system.                   
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From a computational standpoint, it is convenient to circumvent the function G(r,t) and 

proceed directly from the intermediate scattering function, written now as a discrete time 

correlation function of the form: 

                       
 

   
 

'

1 , '

1
, exp exp

L

cl

j k j k

k j j

I i R t i R t
NL



    
 

                            (3.70)                  

which includes self (j = j’) and distinct (j ≠  j’) terms.  The position vectors, {R(t)}, originate 

from an atomistic simulation (classical or ab-initio), while the momentum transfer κ 

functions as an input variable.  The grid of κ vectors may be spaced either linearly or 

logarithmically depending upon the purpose of the calculation and the details of the system.  

Since the thermal scattering cross section is highly sensitive to the behavior of the scattering 

law at small momentum transfers, a logarithmic scale is more appropriate in this context.  In 

the present work, an intermediate function is computed for each atom in the scattering system, 

and the aggregate function corresponds to an average over all atoms.    

   

By writing the atomic positions as c-numbers rather than Heisenberg operators, the classical 

approximation has already been invoked implicitly.  Supplementary quantum correction 

schemes are the subject of a later section.  Unlike the analytic intermediate function derived 

previously for a system of harmonic oscillators, Eq. (3.70) is not premised on the Gaussian or 

incoherent approximations, although the computational cost is greatly reduced if these 

approximations are made.  MD calculations of the scattering law could proceed in 

accordance with any of the following combinations of approximations, which will be 

implemented computationally in Chapter 4:        
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(1)  Classical + Incoherent + Gaussian Approximation 

The Gaussian approximation, when applicable, is computationally time-saving because of the 

separation of the time and momentum transfer variables, which are normally embedded 

together in the particle density operator.  Eq. (3.54) is still valid; however, the mean-squared 

displacement is now determined numerically from the atomic positions.  This can be done 

either directly from the definition of (2.10), or by rewriting the MSD in terms of correlation 

functions and applying the cross-correlation theorem (as outlined by Kneller [47]).          

  

(2)  Classical + Incoherent Approximation 

Under the incoherent approximation alone, Eq. (3.70) is evaluated explicitly with the 

condition j = j’, which is equivalent to averaging the diagonal elements of the I(κ,t) matrix.  

The momentum transfer and time variables are no longer separable, and the intermediate 

function is found by averaging the density correlation function over those vectors κ sharing 

the same modulus  .  The sample over κ must be large enough to account adequately for 

anisotropy in {Rj(t)}without unduly weighting any particular direction.  Typically, a sample 

size of 100 or more randomly generated κ-vectors is sufficient for this purpose.  Calculation 

of the intermediate function now requires one correlation function per atom per κ-point, 

thereby increasing the computational cost significantly over the Gaussian approximation.   

 

(3)  Classical + Gaussian Approximation 

Relaxing the incoherent approximation, all 'j j  terms are now incorporated into the 

thermally averaged density correlation function.  If the local forces on each atom are 
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assumed to be distributed as Gaussian random variables, then the displacements will also be 

Gaussian-distributed [48] and:  

                                  
2

2

' 'exp 0 exp 0
6

j j j ji r t r r t r



 

      
 

                   (3.71) 

which is analogous to the Gaussian approximation of the incoherent intermediate function.  

Unlike the “self” mean squared displacement, the thermal average on the RHS depends not 

only on fluctuations about the equilibrium lattice sites, but also on the mean distance 

separating the sites.  An intuitive deduction is that the contribution to the coherent cross 

section tends to diminish as the atomic pair separation distance increases.  Furthermore, at 

small values of κ, more distant pairs of atoms can contribute significantly.  This is also 

intuitive in the sense that the opposite limit (very large κ) is associated with the purely “self” 

(incoherent) recoil effect.           

 

(4)  Classical Approximation Only 

The computational procedure is similar to the incoherent case, except that, when 'j j , the 

cross-correlation is evaluated instead of the autocorrelation.  A useful property of cross 

correlations is that: 

                                                                   *

xy yxC t C t                                                  (3.72) 

such that only half of the distinct j,j’ combinations need to be considered.  In the parlance of 

matrices, only the upper or lower triangular portion of the I(κ,t) matrix is necessary to 

formulate all off-diagonal elements.  Consequently, the calculation of the intermediate 

function involves N autocorrelations and (N
2
-N)/2 cross-correlations per κ point, where N is 



www.manaraa.com

 60 

the number of atoms.  Given a typical MD supercell of hundreds or thousands of atoms, the 

presence of the geometrical term can increase the computational cost by orders of magnitude 

over the incoherent approximation.   

 

An intriguing possibility is the execution of the exact (“classical only”) calculation over short 

distances followed by a switch-over to the coherent Gaussian approximation at longer 

distances.  Such an approach takes advantage of the fact that the atomic motions become de-

correlated as separation distance increases.        

 

It is worth noting that computations of I(κ,t) may be performed efficiently on parallel 

processors, regardless of the approximations employed.  This becomes apparent from the 

observation that the position correlations of each atom in Is(κ,t) are independent of all other 

atoms, and the pair correlations of Id(κ,t) are independent of all other pairs.  Thus, after each 

processor is assigned a set of atoms or atomic pairs to analyze, the only additional 

communicational overhead originates from the acquisition of a final, global average of I(κ,t).  

For this reason, all modules of the cross section code developed in the present work were 

written in parallel.                  

 

3.3   Liquid Argon S(κ,ω) Benchmark 

 

Throughout the history of classical molecular dynamics, argon (in liquid or solid form) has 

been among the most thoroughly studied systems.  There are several reasons for the 
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particular suitability of argon in this respect.  The high atomic mass of the argon atom 

(relative to typical moderators) greatly diminishes the importance of quantum effects, and the 

absence of chemical reactivity allows for the interatomic potential to be expressed accurately 

in a simple two-body (Van der Waals) form.  Near or above the melting temperature of 85 K, 

the scattering law of argon is nearly identical to its classical counterpart except at very large 

momentum transfers.  Therefore, argon is an excellent benchmark against which validate the 

proposed algorithm for computation of the scattering law.   

 

Two cases are examined: incoherent scattering in liquid argon-40 at 85.5 K with density 

1.374 g/cm
3
, and coherent scattering in liquid argon-36 at 120 K with density 1.043 g/cm

3
.  It 

should be recalled that the coherent scattering law is the sum of the self and distinct parts.   

 

The Materials Explorer program [49] was employed in both cases to extract the time-

dependent positions of the argon system.  Interatomic interactions were modeled through a 

12-6 Lennard-Jones potential using the empirical parameters proposed by Rahman [50].  

Incoherent simulations were carried out for 81.9 picoseconds, and coherent simulations were 

run for 655.4 picoseconds at a time step of 5 femtoseconds in both cases.  The temperature 

was held constant through rescaling of the atomic velocities every four steps.  Because the 

liquid argon system has no long-ranged order (as is true of any liquid), important features of 

the distinct scattering law are dominated by close neighbor interactions and a minimal 

supercell was found to be sufficient.  The supercell size was set to 864 atoms in the 

incoherent case and 16 atoms in the coherent case.               
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Results for the incoherent and coherent MD scattering law are compared against measured 

data from Skold [51] in Fig. 3-2 and Van Well [52] in Fig. 3-3 respectively.  Due to the 

constant migration of atoms across the periodic boundaries of the supercell, the input k-mesh 

for the coherent scattering law was limited to the reciprocal lattice vectors of the cell, which 

give a density term,   exp ji R t , that is continuous with respect to translations across the 

periodic boundary.   

 

It is apparent that, for liquid argon, the classical form of the scattering law matches its 

quantum mechanical equivalent quite closely.  Further confirmation is found in the zeroth 

order moment of the coherent scattering law, governed by Eq. (3.42).  The 0
th

 moment of the 

MD scattering function, shown in Fig. 3-4, exhibits good agreement with the measured 

structure factor of liquid Ar-36 at 120 K.        

 

While liquid-state neutron moderators are certainly of practical and academic interest, the 

present work is concerned with solids and, specifically, the nuances of graphite moderation.  

For solids, a simple equivalence of S
cl
(κ,ω) to S(κ,ω) cannot be established except near the 

melting point, which is never approached in standard reactor operation.  The next section 

focuses on failures of the classical formulation and the means of addressing these 

shortcomings.                       
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                   Fig. 3-2.  Incoherent scattering law of Argon-40 at T = 85.5 K and ρ = 1.374 g/cm

3
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Fig. 3-3.  Coherent scattering law of Argon-36 at T = 120 K and ρ = 1.043 g/cm

3
.  
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Fig. 3-4.  Zeroth moment of the liquid Argon-36 coherent scattering law at 120 K. 

 

3.4   Failure of Classical Formulation 

 

The classical incoherent inelastic scattering cross section of graphite is shown in Fig. 3-5 

alongside the benchmarked ab-initio / lattice dynamical result.  Two deficiencies of the 

classical MD model are immediately apparent.  First, the MD cross section is consistently 

larger than the ab-initio based cross section throughout the entire range of incident energies 

(and especially at low energies).  Second, the classical cross section converges to the bound 

atom cross section rather than the free atom cross section.    
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Fig. 3-5.  The inelastic incoherent cross section of graphite versus its classical MD counterpart 

 

General overestimation:  The classical scattering law is symmetric in β; therefore, phonon 

emission and absorption are given equal weighting regardless of the incident energy.  In 

reality, the proportion of emission to absorption is modulated by the detailed balance factor, 

which stipulates that the probability of finding the system in a higher energy state is lower by 

a factor of  exp / Bk T  than the probability of finding it in a lower energy state.  Phonon 

absorption represents a transition in the scattering system from higher to lower energy, and 

since this is the dominant mechanism for energy transfer at low incident neutron energies, the 

classical scattering law is seen to generate a cross section that is too high.  For example, the 

differential energy spectrum at Einc = 1E-5 eV, shown in Fig. 3-6, mirrors the shape of the 
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phonon frequency distribution yet does not reflect the actual occupancy of the various 

phonon states.  In other words, unoccupied energy states are erroneously contributing to the 

cross section.  To remedy the situation, detailed balance must be enforced properly.   

 

 

Fig. 3-6.  Differential energy spectrum of graphite at Einc = 1E-5 eV 

 

 

 

Atomic recoil: In evaluating the scattering law from classical MD atomic positions, 

information is lost regarding the perturbation to the scattering system caused by neutron 

interaction.  This perturbation appears numerically in the imaginary part of the density-

density correlation function, and its presence is responsible for the quantum 1
st
 order moment 

(recoil) rule.  The 1
st
 order moment is intimately related to the convergence of the cross 
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section to the free atom limit [45]; therefore, the failure of the classical formulation in this 

regard is not surprising.      

 

The differential energy spectrum at incident energy 5.1 eV (near the free atom limit) is 

shown in Fig. 3-7.  Since the recoil response is inadequately treated in S
cl
(κ,ω) and the atom 

cannot receive appreciable energy from the neutron, the classical distribution is highly 

peaked about small energy transfers whereas the ab-initio / NJOY distribution covers a much 

larger range of energy transfers.  As mentioned before, the symmetry of the classical 

scattering law in β results in an equal weighting of energy gain or loss.  Hence, the classical 

cross section is also symmetric about Einc, which is clearly unphysical due to the 

overwhelming preference for phonon emission (downscattering) in this regime.     

 

An intuitive corollary of this argument is that the quantum correction is less important for 

heavy atoms that exhibit little recoil.  This is consistent with the well-known fact that, at a 

given temperature, the impact of quantum effects scales inversely with the atomic mass 

number.  Clearly, the missing quantum effects are critical to the investigation of thermal 

neutron scattering in graphite.  Therefore, a major objective of this work is to supplement the 

classical MD formalism with appropriate corrections.                     
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Fig. 3-7.  Differential energy spectrum of graphite at Einc = 5.1 eV 

 

 

3.4.1   Semiclassical Corrections 

 

Much past effort has been directed towards the derivation of a general semiclassical 

correction function of the form:  

                                                          
 

 

,
,

,cl

S
Q

S

 
 

 
                                                  (3.73) 

that imposes the proper degree of asymmetry into the scattering law.  The idea is effectively 

to simulate the imaginary part of I(κ,t) by introducing a skew in S(κ,ω) resembling that 

which would follow naturally from a complex intermediate function.  Several correction 

functions have been discussed in literature (see, for example, [53]), all demonstrating the 

necessary detailed balance relation between Q(κ,ω) and Q(κ ,-ω).  The simplest approach, 
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attributed to Schofield [54], is to utilize the exponential factor relating the quantum 

symmetric and quantum asymmetric scattering laws: 

                                                            exp / 2sc BQ k T                                           (3.74) 

This version of the correction factor obviously preserves detailed balance but is not the only 

function capable of doing so; for example, the harmonic correction factor [55], given by:      

                                                      
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k T


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                                     (3.75) 

also fulfills detailed balance but is drastically different from the Schofield correction at high 

frequencies.  The harmonic form – so called because it generates the exact quantum result 

from classical correlation functions  that are linearly dependent on the position and / or 

momentum variables [56] – follows from the expansion terms (up to first order) of the 

tangent in Eq. (3.37) after converting to the frequency domain and applying Eq. (3.35).             

 

Yet another candidate form of  Q   is found by simply setting    , ,clS S    , 

yielding: 

                                                          
2

1 exp

st

B

Q

k T





 

  
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                                         (3.76) 

which is labeled the standard approximation in literature [57].  Because of the lack of an ω 

term in the numerator,  stQ  asymptotically approaches a finite number as   in 
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contrast to the other correction functions which increase without limit.  The functions  scQ  , 

 hQ   and  stQ   are displayed together in Fig. 3-8.              

 

Fig. 3-8.  Profiles of the Schofield, harmonic, and standard correction factors.  All converge to unity  

at β=0. 

 

Egorov [53] has examined the suitability of Eqs. (3.74) - (3.76) for various physical systems 

that are analytically solvable.  Perhaps not surprisingly, there is no single factor that 

universally outperforms all others.  The present study is focused on graphite, and so the 

question of immediate interest is:  Which of these factors is most justifiable for solid-state 

systems?  This question will be a subject of investigation in Chapter 4.  Attention is now 

directed towards the alternative approach for the inclusion of quantum corrections: 

evaluation of the imaginary part of I(κ,t).                    
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3.4.2   Imaginary part of I(κ,t) 

 

Turner, in an early work [58], recognized that the intermediate function could be written in 

terms of an expansion over  as: 

                            2
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where pj is the impulse on atom j and A0 = 1.   ,clI t  therefore corresponds to the zeroth 

order term in .  The higher order coefficients are increasingly cumbersome to evaluate and 

are of little practical interest.  The two lowest-order terms in , however, hold special 

physical significance.  Namely, atomic recoil is associated with the expression of order , 

and quantum statistical effects arise in the order 2  term [59].  If only the first-order term is 

included in the summation, it can be shown that: 

                                                      , ,
2

cl

B

i
I t I t

k T
 

 
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 
                                             (3.78) 

which is directly implementable only in cases where the intermediate function varies 

explicitly with time.  This expression is of theoretical interest, however, because it expansion 

(to 1
st
 order in time) is formally equivalent to the Schofield semiclassical correction of Eq. 

(3.74).    
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For systems that obey classical statistics to an overwhelming extent (gases, liquids and high-

temperature solids, for example) the 2  term can be safely disregarded.  Recoil, on the other 

hand, will always be an important physical process when the neutron-to-atom momentum 

transfer is large in comparison with the thermal energy of the atom.  In the regime of low-

temperature solids, both effects impact the thermal scattering cross section appreciably.  

Quantum statistics enter the picture through the thermal occupancy of the phonon modes, 

where, in classical MD, all modes are excited regardless of temperature.  The breakdown of 

classical statistics is responsible, for example, for the well-known failure of the Dulong-Petit 

heat capacity law at low temperatures, later remedied in the Debye model through 

introduction of an appropriate occupancy factor (the Planck distribution).  In neutron 

scattering theory, the occupancy factor is closely related to the detailed balance condition.      

 

Sunakawa, Nishigori, and Yamasaki (in [60],[61], and [62]) further developed the 

relationship between the real and imaginary parts of I(κ,t) through utilization of the quantum-

classical correspondence principle.   The basic idea is that, instead of treating the position 

operators, {Rj(t)}, merely as the classical atomic positions, the non-commutation of Rj(0) 

with Rj(t) is recognized and the scattering formulae are allowed to retain information 

regarding the response of the scattering system to neutron interactions.   

 

In general, given two operators A and B: 

                                                         exp exp expA B A B C                                     (3.79) 

where: 
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                    
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C A B A B B B A A B A A B                             (3.80)                    

The density correlation function has exactly the same form as Eq. (3.79), indicating that a 

similar expansion is possible; namely: 
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in which:                   
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In simple systems, the 2
nd

 order and greater terms are zero.  A well-known result of quantum 

mechanics is that [42]: 

                                                                 
1

, ,A B A B
i

                                             (3.83) 

where    denotes the classical Poisson brackets, defined by: 
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in which qk and pk are components of the generalized positions and momenta.  Keeping the 

first-order term of Eq. (3.82) and expanding:                                                                      
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where p is the momentum exchange.  The factor  '

c

jjK t  therefore describes the change in 

trajectory experienced by atom j in response to an external impulse on atom 'j  (e.g. due to 

neutron interaction).  Although the cross terms ( 'j j ) can be nontrivial for atoms in close 

proximity, only the 'j j  (self) term is considered in the present work.   

 

Some overlap can be seen between the  '

c

jjK t correction and the expansion over  developed 

by Turner.  Retaining the two lowest-order terms of Eq. (3.77) and carrying out the partial 

differentiation, Turner’s equation becomes:   
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where: 
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and Eq. (3.86) is seen to be identical to the first two terms of the Taylor expansion of Eq. 

(3.81) over  c

jjK t .  

 

Generally speaking, the system response is quite sensitive to the magnitude of the external 

impulse, pj, which can range from a slight perturbation to complete dislodgement of an atom.                                            
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The response term, Kjj’, is exactly derivable for certain simple systems.  Two such systems 

are of particular interest in the present work: 

 

Free atom 

A free atom responds to an external impulse by traversing a straight line trajectory at 

constant velocity as: 

                                                              
 0

o

p
r t r t

M
                                                    (3.88) 

where ro is the initial position and p  is the external impulse vector.  In this case, Eq. (3.85) 

gives: 

                                                     
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and the intermediate function becomes: 

                                                      
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                                    (3.90)                       

which is quite generally correct at very large values of the momentum transfer, κ.     

 

Harmonic Oscillator 

A simple harmonic oscillator responds to an impulse as: 

                                                      
 

 
0

cos sino

p
r t r t t

M
                                       (3.91) 

and the corresponding Poisson brackets are: 
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                                                  
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K t pr pr t t

M



                             (3.92) 

which reduces to the free atom case (Eq. (3.90)) in the limit of ω  0.  In real systems, 

atomic vibrations occur over a distribution of frequencies rather than at one specific 

frequency.  Eq. (3.92) can be generalized to a system of interacting harmonic oscillators by 

including the density of states and occupation factors: 
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so that the intermediate function becomes: 
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where the exponential factor is seen to be equivalent to the imaginary argument of the 

intermediate function for a system of quantum harmonic oscillators, as given by Eqs. (3.55) 

and (3.58).  ,clI t is not equivalent to the real part of Eq. (3.55), however, as  ,clI t  and  

Re(  ,I t ) are identical only to zeroth order [63].           

Equation Section (Next) 
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Chapter 4  

Results for Perfect Graphite 
 

4.1 ρ(ω) from MD 

 

4.1.1   Dynamical matrix vs. velocity autocorrelation       

 

A property of great relevance to S(κ,ω) as well as the benchmarking of the MD potential is 

the phonon density of states, ρ(ω), which can be established either through static 

displacements (via the dynamical matrix) or through dynamical correlations at equilibrium.  

ρ(ω) is closely related to the incoherent scattering properties of the system and also reveals 

fundamental information about the details of interatomic binding.             

 

The graphite unit cell is hexagonal with 2 non-equivalent atoms, and so a total of 6 

displacements (3 for each atom) are sufficient to construct the dynamical matrix.  Starting 

from the relaxed MD supercell at 0 K, each basis atom was displaced by a distance D = 0.02 

Å along the following directions:  

                       Displacement 1:       cos / 3 ,sin / 3 ,0r D        

                       Displacement 2:     1,0,0r D   

                       Displacement 3:     0,0,1r D   

where the magnitude of the displacement is kept well within the linear response (harmonic) 

regime.  In general, all atoms in the system will experience some nonzero net force as a 

consequence of the displacement, though atoms sufficiently far from the displacement will be 
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affected negligibly.  Computationally, the size of the supercell limits the maximum range of 

the atomic interactions – an important consideration in ab-initio simulations.  The requisite 

MD supercell size, on the other hand, is dictated by the cutoff distance of the potential energy 

function.  This is due to the fact that, in MD, no additional information is discerned by 

increasing the system size beyond the potential function cutoff range.   

    

For the velocity autocorrelation calculation, <v(0)v(t)> was evaluated from the velocities of 

288 atoms located near the center of an 8000 atom MD supercell, with the velocities recorded 

over 131072 steps (65.5 picoseconds).  Of particular concern is the effect of the Van der 

Waals forces on ρ(ω) at low frequencies.  First, the simplest case was examined –  modeling 

long-ranged forces using only the anisotropic cutoff function discussed in Chapter 2 (and 

with no L-J potential).  The system temperature was set to 300 K, although, well below the 

melting point, the MD density of states is insensitive to temperature.  This is true because the 

phonon states of a classical system are not subject to the thermal factor that attenuates the 

occupancy of high energy vibrational modes.   

 

Fig. 4-1 shows a comparison of the graphite density of states (frequency distribution) 

determined using the dynamical matrix and the velocity autocorrelation methods.  The 

PHONON code [64] was used to process the dynamical matrix from the input MD force file.                   

Dynamical matrix results are shown with and without the condition of rotational / 

translational invariance (RTI), which is commonly imposed in ab-initio / lattice dynamics 
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calculations.  The dispersion relation, also computed from the dynamical matrix, is given in 

Fig. 4-2.   

 

Evidently, the dynamical matrix calculation with RTI generates a smooth parabolic region at 

low frequency, whereas the Fourier transform of the velocity autocorrelation function 

exhibits a gap below 2.5 THz where few vibrational modes exist.  Specifically, the low 

frequency end of the vibrational spectrum is collapsed into a single, narrow peak.  From the 

partial (in-plane and out-of-plane) density of states, plotted in Fig. 4-3, the gap is seen to be 

associated exclusively with the out-of-plane modes.   

 

When the RTI condition is removed, the PHONON calculation is brought into much better 

agreement with the transform of the velocity autocorrelation.  Since the velocity 

autocorrelation function acts as a direct, dynamical measure of the frequency content of the 

system, the observed inconsistency is seen to result from a deficiency in the RTI condition as 

applied to this particular system.  Effectively, RTI alters the Hellmann-Feynman forces such 

that the acoustical modes are compelled to demonstrate Debye behavior about ω = 0.  This 

treatment is generally appropriate for solids; however, there is no guarantee that an empirical 

MD potential function will produce a Debye-type relation at low ω.  Based on these findings, 

it is recommended that the RTI condition be used cautiously in systems that are subject to 

short-ranged empirical potentials.  Because the low-ω regime affects the thermal cross 

section to a far greater extent than other frequencies, the relevant components of the graphite 

potential energy function must be reconciled with the expected Debye behavior. 
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Fig. 4-1.  Phonon density of states of the MD graphite system.  Out-of-plane motion is restricted only 

through the anisotropic cutoff function.  MD / PHONON results are shown with and without the 

rotational / translational invariance (RTI) condition. 

 

 

 

Fig. 4-2.  Phonon dispersion relation of the MD graphite system. 
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Fig. 4-3.  In-plane (top panel) and out-of-plane (bottom panel) partial frequency spectra of the MD 

graphite system.   Out-of-plane motion is restricted only through the anisotropic cutoff function.   

 

 

4.1.2  Mismatch at Low Frequency 

 

In Fig. 4-3, a gap was observed in the low-frequency out-of-plane vibrational modes of ρ(ω).  

Several components of the potential function contribute to out-of-plane vibrations; these 

include the pairwise attractive and repulsive functions, the torsional term, and the c-axis 

cutoff function.  With the exception of the c-axis cutoff, all of the aforementioned terms act 

on neighboring atoms within the same plane.  Evidently, the c-axis cutoff function, when 

used alone, causes all atoms to oscillate at a very specific frequency (~ 2.5 THz) along the c-

axis rather than generating the frequency distribution that would arise in reality through 

direct interplanar interactions.  The solution, therefore, is to explicitly incorporate interplanar 
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interactions into the potential function, as per the long range Lennard-Jones potential 

discussed in section 2.3.1.          

 

To test this hypothesis, the frequency distribution of graphite was computed from <v(0)v(t)> 

under the Lennard-Jones model of the Van der Waals forces.  Without explicit long-range 

interactions, the distribution exhibits a single peak around 2.5 THz and an absence of 

vibrational modes below that point.  With Lennard-Jones interactions added to the REBO 

potential, the density of states from MD matches the ab-initio distribution fairly well, as 

shown in Fig. 4-4.  The Lennard-Jones potential does not impact higher energy modes 

significantly, supporting the earlier assertion that long-ranged, interplanar forces are 

associated with the lowest frequency modes in graphite.  All MD results presented hereafter 

pertain to the potential energy model developed in Chapter 2, which incorporates the 

Lennard-Jones potential in combination with the anisotropic cutoff function.                            

 

Fig. 4-4.  Impact of the long-range force term on the graphite density of states 
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4.2  Heat Capacity 

 

 

The specific heat capacity, CV, is a useful benchmark against which to test ρ(ω) distributions 

obtained from atomistic simulation since the generated distribution should be predictive of 

CV , and also because CV is straightforward to measure experimentally.  The specific heat 

capacity is defined as the amount of thermal energy required to raise the temperature of a unit 

mass by one degree.  Knowing the heat transferred to a substance as well as the resulting 

temperature change, the heat capacity (averaged over the temperature change) is then: 

                                                                   V

Q
C

m T





                                                     (4.1) 

where ΔQ is the heat transferred, ΔT is the change in temperature, and m is the mass.  

Experimental observations have long revealed that the heat capacity of a solid is 

approximately constant at high temperatures.  Under the assumption that Bk T   in the 

system, French physicists Dulong and Petit proved that CV, for simple solids, is given by the 

compact expression: 

                                                                   V A BC rN Mk                                                     (4.2) 

in which r is the number of degrees of freedom, NA is Avogadro’s number and M is the molar 

mass.  Thus, the high-temperature limit of the specific heat capacity of a solid is a universal 

constant equal to about 25 J/mol-K.  

 

Not all phonon modes are excited at low temperatures, however, and corresponding 

adjustments to the theoretical treatment are required in this case.  A more general expression  
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was derived by Debye, who demonstrated that [65]: 
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which leads to a value of CV = 0 at T = 0 followed by a 3

VC T  region at very low 

temperature.  In the classical limit, Eq. (4.3) reduces to the Dulong-Petit law.   

             

Fig. 4-5 shows the heat capacity calculated from Eq. (4.3) using the MD density of states, as 

compared against measured data from DeSorbo [66].  Agreement is generally quite good, 

although a small but significant difference is evident above 400 K.  This may be due to the 

high-frequency modes of the MD distribution, which require a higher temperature for 

excitation and also diverge considerably from ab-initio calculations (see Fig. 4-3).           

  

Fig. 4-5.  Heat capacity of graphite, evaluated from the MD ρ(ω)                    
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4.3   Dynamic Pair Correlation Function 

 

 

Among the various MD correlation functions, the dynamic pair correlation,  ,clG r t , is one 

of the simplest to develop and interpret.   ,clG r t  contains a wealth of dynamical 

information; in fact, an exact knowledge of  ,clG r t  implies an awareness of the distribution 

of atomic displacements at all times.  Because r  is defined as the displacement between two 

atoms, the coordinates of the lattice sites are lost in compiling  ,clG r t  although this 

information is rarely pertinent to dynamical properties.   

 

In the limit of long delay times,  ,clG r   essentially provides a snapshot of the magnitude 

and variance of displacements in the supercell, as shown in Fig. 4-6 for graphite at various 

temperatures.  Assuming the condition of thermal equilibrium,  ,clG r t  is characterized by a 

series of Gaussian-type peaks – one for each coordination shell – which, at large 

displacements, merge together as a continuum due to the shrinking distance between 

neighboring shells.   

 

For a perfectly crystalline system at 0 K,  ,clG r t  would be represented as a series of delta 

functions located at the coordination shell positions.  The effect of temperature is to broaden 

these peaks and decrease the distance at which continuum behavior becomes apparent.  One 

implication of this phenomenon is that distinctive features of the coherent scattering cross 

section are also broadened as temperature increases.       



www.manaraa.com

 87 

 
 

Fig. 4-6.  Long-time limit of the classical dynamic pair correlation function of perfect graphite 

 

 

In spite of peak broadening, the normalization integral over r  is constant as per the relations: 

                                                                
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, 1cl

sG r t dr



                                                     (4.4) 
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where N is the number of atoms in the supercell and 24dr r dr .   ,cl

sG r t  also obeys a 

second-order moment rule:  
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that yields the mean-squared displacement.  Eq. (4.6) can be generalized to the mean squared 

displacement between any two atoms in the system via the expression:      

                                                          2 2

' , '

0

,cl

j j d j jr t r G r t dr



                                        (4.7) 

where  , ' ,cl

d j jG r t  is the j,j’ component of the distinct pair correlation summation.   

 

 

Time Dependence  

 

Fluctuations in  ,clG r t  with respect to time arise primarily in the form of small-scale 

oscillations about the  ,clG r   values plotted in Fig. 4-6.  For a sufficiently large system, the 

shape of the  ,cl

dG r t  functions displayed in that figure is correct even at t = 0, since the 

atoms, at thermal equilibrium, will already be distributed randomly about their equilibrium 

sites.   

 

 ,cl

sG r t  behaves quite differently, however, in that the displacements are referenced to the 

same atom, and  ,0cl

sG r  must therefore be a delta function located at 0r  .  Consequently, 

the time dependence of  ,cl

sG r t  is far more dramatic.  Indeed, as illustrated in Fig. 4-7 for 

graphite,  ,cl

sG r t  undergoes significant changes over time, collapsing from a delta function 

to a broadening Gaussian peak whose center shifts away from the origin over time.  In the 

case of a liquid or gas, the broadening process proceeds ad infinitum.         
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       Fig. 4-7.  Time dependence of the self part of G(r,t) at 300K.  The displacement bin interval, Δr, is    

0.01 Å.     

 

            

4.4   Incoherent Thermal Scattering in Graphite 

 

Numerical Fourier transformation of  ,clG r t  over time and space produces the dynamic 

structure factor, S(κ,ω).  In the present work, S(κ,ω) is evaluated from the time Fourier 

transform of I(κ,t) directly such that κ is specifiable as an input variable.  Otherwise, values 

of κ would be dictated by the range and bin spacing of r in the  ,clG r t  histogram.    

 

Molecular dynamic simulations of perfect graphite were carried out initially at 300 K under 

the NVT ensemble (constant number, volume, and temperature).  For cross section 

calculation purposes, the time-dependent positions of the centermost atoms (256 in number) 
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were recorded following a period of equilibration lasting 10 picoseconds.  System 

temperature was held constant using a thermal bath along the outer edge of the supercell (and 

therefore at a location significantly removed from those atoms involved in cross section 

analysis).  Jumps in the atomic positions due to periodic boundary conditions were removed 

in a post-processing program.  From the positions of the atoms over a period of 131,072 time 

steps (65.5 picoseconds), the intermediate function, scattering law, differential cross section, 

and total inelastic cross section were assessed.   

 

At the chosen time step of 0.5 femtoseconds (dictated by the stability of the numerical 

integration algorithm), the maximum discernable frequency in any derived quantity would 

be: 

                                                           max

1
1000

2
THz

t
  


                                          (4.8) 

which is termed the Nyquist frequency in the parlance of discrete Fourier transformation.  

The most energetic vibrational modes of graphite are known to oscillate at approximately 50 

THz, and so the selected time step is certainly small enough for comprehensive analysis of 

S(κ,ω).  Given Δt and the total number of steps, the nominal frequency bin width will be: 

                                                            
1

0.0076
2

THz
N t

  


                                    (4.9) 

for the specific case discussed above.  Because this Δω is much finer than what is needed to 

investigate significant features of the scattering law, S(κ,ω) is collapsed onto a courser mesh 

along the frequency axis.  The rationale for the coarsening operation is statistical; by 

summing individual estimates of the transform, the variance of the summed estimate is 
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reduced by a factor of 1/N, where N is the number of values in the summation [67].  This 

reduces the noise inherent in individual S(κ,ω) data points , while also purging spurious 

negative values of S(κ,ω).   

                                                      

The classical moment rules are a useful initial check on the accuracy of the MD intermediate 

function and Fourier transformation procedure.  An analysis of the calculated 0
th

 and 2
nd

 

moments in Fig. 4-8 reveals good agreement with the exact theoretical relations of Section 

3.1.4.  These moment rules were found to be satisfied regardless of temperature or state of 

matter, given that no discontinuities exist in the atomic positions (e.g. due to period boundary 

conditions).                         

 

Fig. 4-8.  Classical moments of the MD-derived S
cl
(κ,ω) at 300 K 
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Another useful check is the low-α limit of Ss(α,β) (either classical or quantum), which is 

proportional to the phonon density of states.   

 

4.4.1   ρ(ω) from S(α,β) 

 

The density of states, in this case, is a byproduct of the scattering law calculation.  Assuming 

a Gaussian shape for I(κ,t), the relevant relation is: 

                
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where M is the scatterer mass.  In the MD correlation function approach, the Ss of Eq. (4.10) 

is essentially the classical scattering law to which quantum or semiclassical corrections have 

not yet been applied.  It should be noted that the form of the S(κ,ω)  ρ(ω) relation is 

dependent upon the system model under consideration.  For example, if the system is 

composed of interacting quantum harmonic oscillators, then                                                               
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is the appropriate equation, where sS  is now the symmetrized quantum incoherent scattering 

law.  A step-by-step derivation of Eqs. (4.10) and (4.11) is provided in Appendix B.  These 

relations are, in fact, identical in the classical limit of small beta (i.e. high temperature)  

  

The density of states determined from Eq. (4.10) is shown in Fig. 4-9.  From this figure, it is 

seen that ρ(ω) as the low-α limit of Ss(α,β) agrees almost exactly with ρ(ω) from the velocity 
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autocorrelation function.  To the extent that the computed Ss(α,β) is consistent with the low-

order moment rules, ρ(ω) from Eqs. (4.10) and (4.11) automatically exhibits the proper 

normalization.  The importance of coarsening the frequency mesh is also apparent in Fig. 4-

9; collapsing Ss(α,β) by a factor of 32 transforms ρ(ω) from a noisy, unrecognizable signal to 

a lucid distribution.          

 

 

Fig. 4-9.  Phonon density of states as the low alpha limit of S(κ,ω) before collapsing the frequency domain 

(top panel) and after collapsing by a factor of 32 (bottom panel).      
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The scattering cross section is extremely sensitive to the behavior of S(κ,ω) as low 

frequencies, and this region consequently requires special consideration.  Since low 

frequency vibrations require more time for the completion of a cycle, the low-ω portion of 

S(κ,ω) is statistically the least sampled portion of the function,.  On theoretical grounds, the 

incoherent scattering law is expected to be flat in the immediate vicinity of ω = 0 and κ = 0; 

this is equivalent, in the limit of small momentum transfers, to an exactly parabolic trend in 

the lowest energy portion of the phonon density of states.  A parabolic fitting procedure has 

been performed previously in conjunction with ab-initio / PHONON / NJOY calculations of 

the graphite cross section [14].  In that work, a parabolic cutoff of 5.606 meV (1.36 THz) 

was justified physically and was furthermore demonstrated to generate good agreement with 

experimental cross section data.  The stated parabolic range corresponds to a “flat-top” 

extrapolation of the scattering law below ω = 1.36 THz, which was used as a guideline in all 

MD calculations of Ss(κ,ω).    

 

 4.4.2  Effect of Semiclassical Corrections 

 

The classical scattering law was shown to lack critical information regarding thermal 

occupancy and atomic recoil, therefore bringing about severe discrepancies in the differential 

energy spectra.  A reasonable first approach to correcting this problem is to introduce the 

semiclassical correction factors discussed in Chapter 3, which are simple to implement in 

frequency space.  To this end, the impact of each of the proposed correction factors on the 
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inelastic cross section is now assessed.  Cross section calculations were carried out in 

accordance with the following procedural chain: 

                                , , ,
'

cl cl cl

j s s s

d
r I t S Q S E

dE


                

where the selected reciprocal-space grid spans 120 points that are spaced logarithmically 

between 1.0 nm
-1

 and 1500.0 nm
-1

.  In all cases, the DC (elastic) component of the time 

Fourier transform was subtracted from the scattering law.  The total inelastic cross section 

associated with each semiclassical correction formula is displayed in Fig. 4-10, and the 

corresponding 1
st
 order moments are plotted in Fig. 4-11.   

 

 
Fig. 4-10.  Inelastic incoherent cross section at 300 K, with and without semiclassical corrections to 

S
cl
(α,β).   
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Fig. 4-11.  First moment of Ss(α,β), normalized to the theoretical value.       

 

 

From Fig. 4-10, it is clear that all of the semiclassical correction functions result in improved 

agreement with the ab-initio based cross section at energies below 0.1 eV.  None of the 

semiclassical functions, however, steers the cross section to the correct free atom limit.  Still, 

some perform better than others in graphite, and the harmonic correction in particular is seen 

to match ab-initio / lattice dynamical calculations remarkably well up to 0.1 eV.  The 

Schofield-modified cross section blows up above 1 eV due the exponential growth it induces 

in the scattering law at large, positive values of beta.  Divergence from the free atom cross 

section is also observed following application of the harmonic correction factor, which scales 

linearly with positive beta at large beta.  The standard correction function, on the other hand, 
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asymptotically approaches a constant value as   , and the resulting cross section 

saturates to a constant (σB) as well.                          

 

An important question is:  Why does the harmonic correction fit ab-initio based results 

particularly well below 0.1 eV relative to the other semiclassical factors?  To answer this 

question, it is productive to first consider the position correlation function of a system of 

harmonic oscillators, defined as: 

                                                                 0C t q t q                                                  (4.12)                            

in which q is the collective coordinate: 
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where ck are the expansion coefficients, *

kb  is the creation operator and kb is the annihilation 

operator.  In this case, the exact quantum correlation function:                                              

              
0

exp
1

exp exp

exp 1 exp 1

B

B B

k T
C t d i t i t

k T k T



   
 



     
     

       
       

           
        

             (4.14) 

and the classical function: 

                                                    
 

 
0

2
coscl Bk T

C t d t
 

 




                                    (4.15) 

are related through a simple derivative: 

                                                            
2

cl

I

B

d
C t C t

k T dt
                                              (4.16) 
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which is equivalent to the time-domain expression for the harmonic correction.  In fact, a 

more general statement can be made that the harmonic correction is exact when the quantity 

being correlated is a linear function of the particle positions or momenta [56].  The particle 

density operator,   exp ji R t  , is linearly dependent on position only when κ is small.  

This applies in the linear response regime, where a momentum transfer from the neutron to 

the scattering system constitutes a mere perturbation to the atomic trajectories.  Therefore, 

the harmonic correction produces the correct cross section at low incident energies for which 

the momentum transfer is small, and subsequently breaks down at higher energies where the 

scattered atom recoils strongly.  This suggests that additional correction is needed at large κ 

where recoil is dominant.              

 

Interestingly, the harmonic correction represents a well-defined classical limit of generic 

quantum time correlation functions.  This is demonstrable through the Kubo transform of the 

correlated operators.  In general, for operators x̂ and ŷ , the quantum correlation function is 

defined by [68]: 

                                            
ˆ ˆ1

ˆ ˆ' exp expxy

iHt iHt
C t Tr x y

Z

    
      

    

                             (4.17) 

where: 

                     
ˆ

ˆ ˆ' exp
B

H
x x

k T

 
  

 
                              generates the standard asymmetric function 

              
ˆ ˆ

ˆ ˆ' exp exp
2 2B B

H H
x x

k T k T

    
    

   
                    generates the symmetrized function                                    
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  
1/

0

1 ˆ ˆˆ ˆ' exp exp
Bk T

B

B

x k T d H x H
k T

  
  

      
  

      produces the Kubo transformed function      

  

in which Z is the partition function.  These three versions of the correlation function are 

related, in frequency space, by multiplicative factors as:                                                                                                

                               exp
2

1 exp

Kubo symB
xy xy xy

B

B

k T
C C C

k T

k T




  



 
   

     
 

                 (4.18)       

where, substituting the particle density operators in place of x̂  and ŷ , it is apparent that the 

scattering law is one possible form of the function Cxy(ω).  In the classical limit, the Kubo 

transform of an operator becomes the classical expression for that operator [69].  Therefore, 

to the extent that the classical limit is valid (for example at high temperatures or for small 

energy and momentum transfers): 

                                                   , ,

1 exp

clB

B

k T
S S

k T



   



 

  
 

                                  (4.19)                       

                                                                ,clC S    

where the scaling factor, C(ω), is identical to the harmonic correction of Eq. (3.75).   

 

The MD asymmetric scattering law, with the inclusion of the harmonic correction term, is 

compared against its ab-initio / NJOY counterpart in Fig. 4-12.  Agreement at large β is 

particularly noteworthy because this is precisely the region that is most influenced by the 
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specific form of the semiclassical correction.  In general, the performance of the harmonic 

correction is quite satisfactory except at high incident energies.     

 

Fig. 4-12.  Asymmetric scattering law as a function of positive beta, at select values of alpha.   The 

harmonic semiclassical correction has been applied to Ss(α,β).     

 

 

In the case of an ideal harmonic oscillator, exact formulae are known for the classical, 

quantum, and semiclassical scattering law, and Kaplan and Zweifel [70] have established a 

range of validity for the semiclassical approximation.  By expanding the quantum scattering 

law and comparing against the semiclassical version, they have shown that the latter is 

justified when α 12 .  This result accords well with the observed non-functionality of the 

harmonic correction at high incident energies where the recoil effect dominates.         
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4.4.3  Classical / Quantum I(κ,t) Relation  

 

The harmonic correction is numerically robust and transferable to any solid state system; 

however, the breakdown of semiclassical corrections at high α remains a severe impediment 

to its implementation.  To the extent that atoms in the MD system oscillate about well-

defined lattice positions, which is quite true except near the melting point, a comprehensive 

time-domain transformation between the classical and quantum functions can, in fact, be 

devised.  This is demonstrable from the analytic  ,cl

sI t  expression for a harmonic 

oscillator system, given by: 

                                  
 

 
2

2

0

, exp 1 coscl B
s

dk T
I t t

M

 
 



 
     

 
                        (4.20)      

or, in terms of dimensionless quantities: 

                                      
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 
     

 
                            (4.21)                  

where 't is time in units of / Bk T  seconds.  The exact quantum function, in comparison, is 

given by: 

                   
   

 
   

exp / 2
, ' exp 1 cos ' sin '

2 sinh / 2
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  
   

 





 
       

 
               (4.22) 

as was derived in Chapter 3.  Significant differences between the classical and quantum 

functions include the presence of the sine term and: 

                                                           
 

2

exp / 21

2 sinh( / 2)



  
                                            (4.23)             
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in the integrand, where the RHS reduces to the LHS in the low-β limit.  The procedure for 

transforming the classical function to the corresponding quantum version is then as follows.           

 

A function  f   is defined as: 

                                                                 2/f                                                      (4.24) 

and the integral in the RHS of Eq. (4.21) is isolated by taking the logarithm of both sides: 

                                       
 

   
ln , '

1 cos '

cl

sI t
d f t


  







                                     (4.25)                   

                                                                   cos 'd f t   




    

where: 

                                                                 d f  




                                                    (4.26)                                

is the classical analogue of the Debye-Waller lambda.  Integrating through by  cos 't , 

where μ is a dummy variable:  

                                    ' cos ' ' cos ' cos 'dt t d f dt t t     
  

  

                          (4.27)   
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so that: 
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where the RHS depends solely on MD trajectory data.  From relation (4.23), the quantum 

version of  f   is defined as: 

                                                     
 

 
 

exp / 2

2sinh / 2

qf f
 

 


                                           (4.29)                                         

which, substituted back into Eq. (4.22), gives:                                               

                              , ' exp 1 cos ' sin 'q

sI t d f t i t     




 
      

 
              (4.30)        

where the sinusoidal integrals on the RHS can evaluated from the real (cosine) and imaginary 

(sine) components of discrete Fourier transforms.  The quantum factors  qf  and  sin 'i t  

may be interpreted in the following way:  qf  transforms the classical version of the 

occupancy factor (i.e. the phonon equivalent of the Rayleigh-Jeans distribution) to the Planck 

distribution, while  sin 'i t  defines the system response due to an external impulse.  These 

attributions are made clear through an examination of the derivation of Eq. (3.94), in which 

the classical-quantum correspondence principle was utilized to replace the quantum 

mechanical commutator with classical Poisson brackets.  Specifically, the sinusoidal term 

originates from Eq. (3.92), whereas the function  qf  follows by taking the ratio of the 

bracketed term of Eq. (3.93) to its classical analogue.                  
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In summary, the real and imaginary parts of the quantum intermediate scattering function 

have been expressed as a transformation of the classical (MD-derived) function.  The Fourier 

transform of Eq. (4.30) over time yields the quantum-corrected scattering law, which satisfies 

both detailed balance and the first-order moment rule.  Fulfillment of the detailed balance 

condition is shown explicitly in Fig. 4-13.  In the limit of small α, the proposed classical-to-

quantum transformation of I
cl
(κ,t) reduces to the harmonic semiclassical correction of Eq. 

(3.75).  This is proven in Appendix C.             

 

 

Fig. 4-13.  Detailed balance ratio at a) α = 1E-4;  b) α = 1E-3 ;  c) α = 1 ; and d)  α = 10.  A ratio of unity 

indicates agreement with the detailed balance relation.  
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4.4.3.1   Intermediate Function 

 

As quantum effects are incorporated into the real, classical intermediate function, the reaction 

of the scattering system to the neutron interaction is manifested in the imaginary part 

of  ,I t .  The detailed nature of this response formally depends upon both the direction and 

magnitude of the momentum transfer; however, in general terms, the system response would 

be expected to increase in magnitude with   and approach the free atom limit as   

becomes very large.  Fig. 4-14 shows the real and imaginary parts of  ,I t  at 300 K, as a 

function of   and t.  The behavior of  ,I t  at very large   is displayed separately in Fig. 

4-15.               

 

Fig. 4-14.  Time dependence of the real and imaginary parts of Is(κ,t), Eq. (4.30), at 300 K. 
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Fig. 4-15.  Time dependence of the real and imaginary parts of Is(κ,t), Eq. (4.30), at κ=500 nm
-1

  (in the 

free atom response regime of κ). 

 

 

As anticipated, the imaginary part of  ,I t  increases monotonically with  , eventually 

approaching the same magnitude as the real part.  At all values of  , the imaginary part 

scales linearly with t at short times in accordance with the exact free atom relation of Eq. 

(3.90).  This is especially evident at very large   where the density autocorrelation dies out 

quickly and small-scale oscillations in  ,I t  are overshadowed by the transient, short-time 

response. 

 

The convergence of the imaginary part of  ,I t  to the free-atom Poisson bracket equation 

is numerically demonstrable.  At short times, the exact free atom expression for the  

imaginary part of  ,I t  simplifies to: 
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                                   
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                         (4.31) 

where  , 1cl

sI t   in the aforementioned limit.  Consistency with Eq. (4.31) can be 

validated by ascertaining the slope of the computed intermediate function with respect to 

time (at various momentum transfers) and comparing against the analytic expression of the 

free atom.  The short-time behavior of  ,II t  is shown in Fig. 4-16, and an analysis of the 

fitted slopes is given in Fig. 4-17.  Agreement with Eq. (4.31) is indeed observed, signifying 

that the proposed classical-quantum transformation expression reduces to the expected free 

atom limit.  On a side note, the striking similarity between the free atom prefactor 

( 2 / 2M ) and the 1
st
-moment sum rule is not coincidental, since both relate to the 

scattering system response.   

 

                                         Fig. 4-16.   Imaginary part of Is(κ,t), Eq. (4.30), in the short time limit  
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Fig. 4-17.  Slope of the imaginary part of Is(κ,t), Eq. (4.30), in the short time limit vs. the predicted slope 

from the free atom Poisson bracket expression.   

 

 

4.4.3.2   Scattering Law 

 

The quantum-corrected MD scattering law at 300 K is plotted in Fig. 4-18 alongside ab-initio 

/ NJOY calculations as well as the ENDF/B-VII standard.  All are seen to converge in the 

high alpha limit, but significant differences exist at lower values of alpha due to disparities 

between the ab-initio and Young-Koppel (ENDF) densities of state.  MD scattering law 

calculations follow the validated ab-initio derived results quite closely through a wide range 

of alpha and beta, demonstrating the suitability of both the quantum correction methodology 

and the (classical) dynamics of the MD graphite system.
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Fig. 4-18.  Symmetric scattering law at 300 K and a) β = 0.2 ; b) β = 0.4 ; c) β = 0.8 ; and d) β = 1.



www.manaraa.com

 110 

4.4.3.3    Cross Section 

 

The proposed real-imaginary I(κ,t) transformation has been proven to obey the detailed 

balance and free atom relations in the appropriate limits.  Fig. 4-19 and Fig. 4-20 show the 

derived total and differential scattering cross sections as compared to the semiclassical 

harmonic correction, in which the relevant quantum effects were introduced through a 

frequency-domain adjustment factor.  The real-imaginary I(κ,t) transformation is observed to 

produce differential cross sections that are consistent with the ab-initio / NJOY standard at 

all incident energies.  Thus, the classical scattering functions – which severely overestimate 

the graphite cross section – have been brought into line with experimental data through the 

incorporation of the imaginary components of G(r,t) and I(κ,t).      

 

Fig. 4-19.  Comparison of the total cross section generated under the proposed harmonic semiclassical 

and I(κ,t) transform schemes.    
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Fig. 4-20.  Comparison of the differential cross sections generated under the proposed harmonic 

semiclassical and I(κ,t) transform schemes at a) 1E-5 eV, b) 0.0253 eV, c) 0.184 eV and d) 5.1 eV.    

 

4.4.4  Moment Analysis 

 

The zeroth and first order moments of the scattering law, in dimensionless form, are 

governed by the following general relations: 

                                , 1d S  




          [with elastic peak]                                         (4.32) 

                                  , 1 expd S   




       [without elastic peak]                     (4.33)   

                                 ,d S    




                                                                         (4.34) 



www.manaraa.com

 112 

where λ is the Debye-Waller lambda, defined by: 
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2 sinh
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



 

                                           (4.35) 

which is related to the relative contribution of the elastic peak to the zeroth moment.  Since 

the elastic peak is of no interest in the present work, the appropriate version of the zeroth 

moment is that given in Eq. (4.33).  This is also the version that is implemented, for example, 

in the LEAPR code.        

 

Insight into the MD Debye-Waller λ can be gleaned by fitting the zeroth moment (without 

elastic peak) to Eq. (4.33), where λ is the sole fitting parameter.  This fit is shown in Fig. 4-

21 alongside the calculated moments of the MD scattering law.  The RHS of Eq. (4.33) is 

seen to match the MD data rather well, producing a best fit value of 0.891 for λ.  By 

comparison, the direct computation of λ using the ab-initio frequency distribution results in a 

value of 0.897 for λ – a deviation of less than 1% from the MD value.        

 

The first-order moment of the MD scattering function is seen to agree with theoretical 

expectations, matching Eq. (4.34) to within a few percent except at extremely high alpha.  

Due to the close interrelation between quantum effects and the first-order moment, 

agreement with Eq. (4.34) is viewed as essential in validating the MD quantum correction 

scheme developed here.  In the absence of such agreement, the cross section does not 

converge to the correct free atom limit.        
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Fig. 4-21.  Computed moments of the MD scattering law.  The first-order moment has been normalized 

by its theoretical value.   

                

 

4.4.5  Relaxing the Gaussian Approximation 

 

With the MD scattering law and cross section validated against ab-initio / NJOY calculations, 

the Gaussian approximation may now be relaxed with confidence.  This entails evaluating the 

intermediate function directly as: 

                            
 

   
 
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1 , '

1
, exp exp

L

cl

j k j k
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
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 

                       (4.36) 

without reducing it to a function of the mean-squared displacement alone.  Since the variable 

κ retains its vector status in this situation, the intermediate function is determined by 
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averaging over those vectors κ having the same modulus  , where the input κ vectors are 

randomly generated.   

 

Using a set of 100 random κ vectors for each shell of   , the incoherent cross section was 

computed again using the classical-to-quantum conversion routine discussed in section 4.5.4.  

The total cross sections, shown in Fig. 4-22, change little under the removal of the Gaussian 

approximation, thus revealing that the Gaussian approximation is generally accurate for 

graphite.  The differential spectra, displayed in Fig. 4-23, are impacted slightly at small 

values of the energy transfer, although no significant changes are observed in the shape of the 

secondary distributions.       

 

While the impact of the Gaussian approximation on the differential and total cross section 

appears minimal, it should be noted that these are integral quantities; information of greater 

fundamentality is obtainable from a direct comparison of Is(κ,t).  To this end, the time-

averaged fractional deviation of the Gaussian-approximated Is(κ,t) function relative to the κ-

sampled Is(κ,t) function, given by: 

                                                 
   

 
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G

s s
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s
t

I t I t
R

I t

 





                                         (4.37) 

is plotted in Fig. 4-24.  An RG value of zero indicates that the functions are identical on the 

investigated domain.                
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Fig. 4-22.  Incoherent inelastic scattering cross section at 300 K, with and without the Gaussian 

approximation 

 

 

Fig. 4-23.  Incoherent inelastic cross section at 300 K, with and without the Gaussian approximation, at  

a) 1E-5 eV, b) 0.0253 eV, c) 0.184 eV and d) 5.1 eV.      
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Fig. 4-24.   Time-averaged deviation factor RG (see Eq. (4.37)) as a function of α.  Also shown is the 

time-average magnitude of the real part of Is(κ,t).                

 

 

In Fig. 4-24, the deviation factor, RG, increases monotonically with α, reaching a value of 4% 

at α = 1 and 10% at α = 3.  Because the cross section is more sensitive to the low-α behavior 

of the scattering function, and also because the magnitude of Is(κ,t) dies out rapidly with 

increasing α, the deviation at high α has negligible effect on the cross section.  Reasons for 

the large deviation at high α are at least partly numerical; for example, the decay of the 

Gaussian-approximated Is(κ,t) is governed by an analytic relation, whereas the decay of the 

κ-sampled Is(κ,t) follows from the numerical averaging of the particle density operator 

product of Eq. (4.36).  It is not surprising, therefore, that the two formulae give somewhat 
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different results at high α where Is(κ,t) lies many orders of magnitude below unity (except at 

extremely short times).                      

4.4.6   Effect of Temperature 

 

The impact of temperature on the cross section is determinable simply by raising the 

temperature of the MD system.  Resultant changes in the time-dependent atomic positions are 

then reflected in the scattering law through the Fourier transform relations.   

 

The high- temperature limit of the cross section is well known: as interatomic binding effects 

becomes less and less important, the system approaches the “free gas” limit in which no 

crystalline atomic structure exists.  In this limit, the cross section is essentially the free atom 

cross section everywhere, modified by a 1/v tail at low energies.  At intermediate 

temperatures, one would expect the cross section to increase with temperature due to the 

higher occupancy of phonon states, which in turn provides more opportunity for energy 

exchange between the impinging neutron and the crystal.               

 

The effect of temperature on the scattering law and total cross section is shown in Fig. 4-25 

and Fig. 4-26 respectively.  Associated differential cross sections are given in Fig. 4-27.  

Agreement is excellent between the ab-initio / NJOY and MD cross sections, both of which 

approach the free gas limit at high temperatures, as expected.  In the limit of high incident 

energies, temperature has negligible effect because the thermal vibrations of the nuclei will 

be insignificant with respect to the motion of the neutron.                
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                                                               Fig. 4-25.  Temperature dependence of the MD incoherent inelastic scattering law.   
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 Fig. 4-26.  Temperature dependence of the MD incoherent inelastic differential cross section at a) 1E-5 eV, b) 0.0253 eV,  

c) 0.184 eV and d) 5.1 eV.    
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                  Fig. 4-27.  Effect of temperature on the total inelastic incoherent cross section.   

 

 

Two conclusions are readily drawn from the temperature dependence of the differential cross 

sections of Fig. 4-27.  First, at low incident energies, the upscattering cross section (i.e. the 

region where E’ > Einc) increases in magnitude rapidly with temperature.  Phonon absorption 

is the dominant mechanism of energy transfer at small Einc, and so the cross section is highly 

sensitive to the phonon population (occupancy) of the lattice, which varies with temperature 

as per the Planck distribution.  Second, there is a tendency for the differential distribution to 

become more symmetric about Einc at higher temperature – a trend most apparent in panels c) 

and d).  This is consistent with the earlier discussion of the classical cross section, for which 

parity was attained between positive and negative energy transfers due to the fact 
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that    , ,cl clS S     .  Since the classical scattering law can be posited as the high 

temperature limit of  ,S   , the symmetry about Einc at high temperatures follows from the 

diminished impact of quantum effects. 

 

4.5 Coherent Scattering 

 

Recoil (in the conventional sense) does not play a role in distinct scattering, and quantum 

effects are, on the whole, considerably less important in Sd(κ,ω) because energy and 

momentum transfers are generally much lower than in Ss(κ,ω).  Similar conclusions have 

been drawn by Wick [71].  Detailed balance still holds for Sd(κ,ω), however, and the 

harmonic correction factor is therefore retained in the distinct formulation.  As was shown in 

Fig. 3-8, the multiplicative correction factors for detailed balance all converge to unity at β = 

0 but modulate the scattering law greatly at large values of β.  Thus, the influence of the 

harmonic factor on the distinct scattering law is expected to be small due to the shorter 

effective range of β.   

 

The spatial dimensions of the supercell are an immediate concern in evaluating Sd(κ,ω) since 

the supercell dimensions determine the range of interatomic distances over which Sd(κ,ω) is 

computed.  From the Gaussian form of the coherent intermediate function (Eq. (3.71)), it is 

apparent that Id(κ,t) very quickly dies out as either κ or Δr increases.  Noting that the number 

of candidate atomic pairs increases approximately in proportion to r
2
 from a reference atom, 

one can show that a range of a few tens of angstroms is sufficient for ascertaining Sd(κ,ω).  
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For the present work, calculations were performed using a 9600 atom supercell.  

Computational cost was further reduced (and edge effects avoided) by selecting only the 

centermost 20 atoms as j atoms, with the j’ index running over all 9600 atoms in the system.  

The atomic positions were recorded for 131,072 steps (65.5 ps) after the equilibration period, 

as in the incoherent case.                        

 

For a 9600 atom system (with the j index running over the central 20 atoms), a total of: 

                                       
 2

191790
2

j j

pair j j

N N
N N N N


                               (4.38)                               

atomic pairs would have to be considered.  The cost of the calculation is reduced 

considerably by invoking the coherent Gaussian approximation beyond a certain cutoff 

radius, which is justifiable in the case that correlated motion is negligible beyond that 

distance.  This is generally a good approximation outside of the close neighbor shells.  The 

intermediate function is therefore calculated as:   

             
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                 (4.39)                                     

where 'j jR r r  .  In all other respects, the computation of Sd(κ,ω) and derived quantities is 

identical to the incoherent case.   

 

The room temperature MD total inelastic scattering cross section is plotted in Fig. 4-28, and 

the associated distinct distributions are shown in Fig. 4-29.  Here, the ab-initio + 1-phonon 
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curve refers to the sum of the ab-initio / NJOY incoherent cross section and the exact distinct 

1-phonon cross section.  An Rcut value of 3.7Å was selected in order to ensure that 

correlations in the first few coordination shells were evaluated exactly.  It is interesting to 

note that if the coherent Gaussian approximation is utilized everywhere (i.e. if Rcut = 0), then 

the differential spectra are guaranteed to be positive over the entire domain.  Hence, negative 

values in the distinct scatter law or differential spectra are a consequence of the close 

neighbor correlations.  Good agreement is observed against measured data for the total 

scattering cross section, and the differential cross sections from MD also match the ab-initio 

based 1-phonon differentials reasonably well.  Limited experimental data for S(α,β) at 300 K 

is available from Wikner [72]; this is plotted alongside the total S(α,β) from MD in Fig. 4-30.   

 

Fig. 4-28.  Total inelastic cross section of graphite at 300 K.  The experimental measurements of Steyrel 

[16] and Zhou [19] are shown as diamonds.  
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Fig. 4-29.  Distinct differential cross section at a) 1E-5 eV, b) 1E-4 eV, c) 3E-3 eV and d) 0.025 eV.    

 

An excellent benchmark of the MD coherent calculation is the set of experimental scattering 

law data published by Carvalho [73] for 533 K graphite.  Carvalho’s data, complete with 

uncertainty estimates, shows clearly the oscillations that Sd(α,β) superimposes onto the 

normally smooth Ss(α,β).  By integrating S(α,β) to obtain the cross section, these oscillations 

are largely dampened or removed from the final product, and so the original S(α,β) 

distribution is a superior indicator of the underlying system dynamics.  Fig. 4-31 

demonstrates that oscillations in the MD S(α,β) are overwhelming in-phase with those of the 

1-phonon distinct curve, and, furthermore, that the MD scattering law exhibits similar 

agreement with experimental measurements.           
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Fig. 4-30.  Total scattering law of graphite at 300 K, including coherent effects.    
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Fig. 4-31.  Total scattering law of graphite at 533 K, including coherent effects.
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Chapter 5  

Results for Damaged Graphite 
 

5.1  Introduction 

 

Materials exposed to neutron irradiation (e.g. in a reactor environment) will experience 

defect accumulation as a consequence of neutron interactions with the constituent nuclei.  For 

a moderator material, such damage arises overwhelmingly from fast, fission-born neutrons 

that slow down due to a series of collisions with the atoms comprising the moderator.  Very 

often, the energy imparted by the neutron is far in excess of the site energy of the atom, in 

which case the atom is dislodged and instigates a cascade of defects.  Over time, the defects 

created in this manner can interact to generate intricate formations.  And while it is well 

known that the presence of defects can cause drastic changes in properties such as thermal 

and electrical conductivity, recent work with ab-initio simulations [21] suggests that 

irradiation-induced defects influence the thermal scattering cross section as well. 

 

Simulating radiation damage with MD is, in principle, a fairly simple matter.  The neutron 

need not be introduced explicitly into the simulation – only the kinetic energy transferred to 

the primary knock-on atom (PKA) is of practical import.  Once the kinetic energy is imparted, 

the damage evolution process proceeds naturally until a new, quasi-stable state is reached 

(generally coinciding with the dissipation of the temperature spike).  Atoms may continue to 
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migrate through defect hopping, but the characteristic timescale of defect migration largely 

falls outside the standard timescale of MD simulation.                  

5.2  Defect Formations 

 

A damaged sample of graphite can contain a number of distinctive defect formations, some 

of which originate from the migration and consolidation of simple point defects.  The most 

basic defect is the Frenkel pair – essentially a vacancy / interstitial pair.  Frenkel defects 

exist naturally at concentrations dependent upon temperature via an Arrhenius-type relation, 

and their number is augmented by irradiation.  Graphite interstitials preferentially congregate 

in the interlayer gaps, where there is abundant open space to accommodate them.   

 

These interstitials, as well as the vacancies left in their wake, can coalesce into more complex 

structures such as the interstitial and vacancy loops shown schematically in Fig. 5-1.  The 

migration energy for interstitials is relatively low between planes, and so, in the absence of 

recombination sites, diffusing interstitials will tend to congregate together in a more 

energetically favorable configuration resembling a new graphitic layer.  A vacancy loop, on 

the other hand, causes the inward collapse of nearby layers due to local distortions in the Van 

der Waals forces.       

 

On a typical MD timescale that is too short for significant diffusional restructuring to occur, 

radiation-damaged regions of graphite can be divided broadly into one of two categories: 
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 Lightly damaged regions, dominated by simple vacancy and interstitial defects 

that are embedded within a well-defined graphitic layered structure 

 Heavily damaged regions, in which the graphitic structure has been disrupted to 

the point of amorphization, and discrete layers are no longer discernable 

This distinction shall be further clarified through visualization of the products of MD 

collision cascades.   

 

                             Fig. 5-1.  Accepted model of defect aggregations in graphite [74]. 

                              

In the present work, the following computational procedure was employed to simulate 

cascade defect production: 

         1.    The system is relaxed at a set temperature, which is controlled using a thermal bath. 

    2.    A PKA is selected at random from atoms outside of the bath.  The velocity vector 

of the PKA is directed towards the center of the system in order to minimize 

energetic collisions within the thermal bath while still precluding directional bias.     
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          3.    A “cool down” period follows the cascade, allowing for prompt migration and/or 

recombination to take place.     

          4.    Steps 2-3 are repeated until the desired degree of damage is reached. 

5.2.1  Simple Vacancy and Interstitial Defects 

 

Interplanar interstitials tend to be the most obviously observable defects in lightly damaged 

systems.  As an example, the steady-state structure of an MD graphite system following a 1-

keV cascade simulation is shown in Fig. 5-2.  For the purpose of visualization, MD output 

was fed into the Visual Molecular Dynamics (VMD) code [75], which is capable of 

displaying and animating time-dependent atomic configurations.  This required a simple 

conversion to the XYZ format – a minimalist file structure containing the coordinates of each 

atom at each time step.  If desired, additional information such as the site energy or net force 

can also be appended to enable a visual interpretation of the interatomic interactions. 

 

As expected, a number of interstitials are seen to have settled between the graphitic basal 

planes, including one di-interstitial that is clearly discernable near the top of the figure. 

In addition to the generic interplanar interstitial, several other specific defect forms are 

known to exist in graphite.  A typical vacancy formation is the Stone-Wales defect [76], 

distinguishable by the coexistence of pentagonal and heptagonal rings in close proximity.  

Numerous examples of this defect were observed in regions of the graphite MD supercell that 

were significantly impacted by cascade sequences; a close-up view of one such defect is 

shown in Fig. 5-3.  The same imperfection is displayed in Fig. 5-4 in the context of a 
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damaged graphite layer.  For purposes of comparison, a reference schematic of basal plane 

vacancy clusters is displayed in Fig. 5-5.            

 

 

Fig. 5-2.  Steady-state structure of graphite following a 1 keV cascade.  Only those atoms significantly 

affected by the cascade are included; the supercell itself extends far beyond the displayed region.          

 

                

                  Fig. 5-3.  Close-up view of a Stone-Wales defect from MD (left) and from ab-intio [76] (right).         
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Fig. 5-4.  Stone-Wales defect in the context of a damaged basal plane.  The heptagonal rings are marked 

with an “SW”.  

     

 

Fig. 5-5.  Defects within the graphite layer, from [77]. 
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The damaged layer of Fig. 5-4 contains single vacancies as well as a cluster of multiple 

adjoined vacancies.  Occasional pentagonal or heptagonal rings are also visible apart from 

those comprising the Stone-Wales defect.  At higher temperatures and sufficiently long times, 

diffusional processes becomes a significant factor in enabling the aggregation of vacancy 

loops from individual defects.  Calculations in the present work typically span tens or 

hundreds of picoseconds, which is insufficient to witness considerable defect diffusion.       

 

Another defect that has been identified through atomistic simulation is the cross-planar 

divacancy defect, which generates a “dumbbell” type bond between the planes.       

A comparison of the MD formation with one generated from ab-initio structure optimization 

[78] is shown in Fig. 5-6, and a top view of the same MD defect is given in Fig. 5-7.  In this 

particular MD formation, the dumbbell axis lies at a 45˚ angle to the crystallographic c-axis 

and oscillates about a mean length of 1.55 Å – somewhat longer than the corresponding ab-

initio defect, which forms a lesser angle with the c-axis.  Such a relationship between angle 

and distance is to be expected, since the bridging distance increases with angle.          

 

 

  Fig. 5-6.  Interplanar divacancy defect:  from ab-initio simulation [78] (left) and from MD simulation 

(right). 
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Fig. 5-7.  Top view of the MD interplanar divacancy defect.  Atoms colored in cyan form the top layer 

while atoms colored in grey comprise the bottom layer.  The divacancy defect is evident near the center 

of the image.  Other imperfections are also present such as the pentagonal rings in the top-left corner. 

 

5.2.2   Heavily Damaged Systems   

 

In regions of heavy damage that have, for instance, experienced the passage of multiple 

cascades, the ordered carbon layers of graphite exhibit amorphization and the simple defects 

described in the previous section become less distinguishable as the material structure itself 

undergoes fundamental changes.  Taken to the limit of extremely heavy damage (i.e. an 

infinite number of cascades) and in the absence of annealing, one would anticipate the 
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transition to an isotropic, amorphous structure.  Physical properties that are sensitive to the 

details of atomic binding would correspondingly reflect these structural alterations.      

Of immediate interest is the effect of extensive damage on the MD graphite system.  An 

example of the long-term accumulation of defects is shown in Fig. 5-8, which illustrates the 

state of a 9216 atom supercell following a series of 25 1-keV cascades.  As the level of 

damage increases, isolated vacancies and interstitials no longer dominate the defect network, 

and fully-developed interplanar cross-linking becomes evident.  

 

 Indeed, individual planes lose their identity in certain regions of the cell, especially towards 

the center where most of the damage is concentrated.  The cross-linking effect is displayed 

more clearly in the close-up view of Fig. 5-9, showing one subregion of the damaged 

structure.  The associated rearrangement of atoms within the basal plane is illustrated in Fig. 

5-10.                                        

 
Fig. 5-8.    A 24x24x4 graphite system before (left panel) and after (right panel) a series of 25 1-keV 

cascades initiated at random locations within the cell.  Only the most heavily damaged region is shown 

here.       
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Fig. 5-9.  Side view of one segment of a damaged MD graphite system.  Extensive crosslinking has  

occurred between the planes   

 

 

 

 

 

Fig. 5-10.  Top view of the damaged segment.  A line of vacancies cuts diagonally across the cell, forming 

a boundary between two continuous regions of the basal plane.      
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Evident in Fig. 5-10 is the development of a fissure (vacancy line) separating two distinct 

segments of the basal plane.  The location of the fissure coincides with the cross-linked 

region shown in the adjacent panel.  Burchell [79] has described a similar defect in 

conjunction with irradiation damage to graphite; this defect, displayed in Fig. 5-11, is also 

characterized by the linking together of two neighbor planes and the related formation of 

nearby vacancy clusters. 

 

 

Fig. 5-11.   Cross-linking of two planes, with the accompanying formation of vacancy lines (from [79]).  
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5.3 Stored Energy 

 

As defects build up in the system, the average binding energy per atom will be reduced – in 

other words, a portion of the energy introduced through cascades is stored in the supercell.  

Any disruption to the minimum-energy structure will, by definition, increase the system 

potential energy.  By the same token, defect annealing returns the system to lower-energy 

state, thereby transforming the stored energy into kinetic energy.   

 

Recognized by E.P. Wigner [80] and investigated by later workers ([81],[82]), the issue of 

the buildup and release of stored energy has long been a concern in graphite-moderated 

reactors due to the possibility of a runaway temperature transient.  While the stored energy is 

measurable indirectly using calorimetry, it is quite accessible computationally because the 

potential energy is a fundamental output variable of MD (or ab-initio).  The quantity of 

interest is the average change in potential energy (per atom) brought about by defect 

accumulation, conventionally converted to units such as J/g.   

 

Fig. 5-12 shows the change in the average potential energy of an 8000 atom supercell as 

randomly-located 1.5 keV cascades are initiated in the system.  Each cascade causes a spike 

the potential energy that is partially dissipated by recombination processes, with the end 

result that the system settles out in a quasi-stable, higher-energy state.  The system is only 

quasi-stable because, over long periods of time (relative to the standard timescale of MD), 

diffusional processes will instigate further defect recombination, and the system gradually 

transitions to a lower-energy state.  For the purposes of MD, quasi-stability is usually 
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achieved shortly after the cascade-induced temperature spike had dissipated.  From Fig. 5-12, 

the thermal spike is observed to quench within a few picoseconds of the cascade event.                                    

 

In a closed supercell, stored energy does not accumulate linearly with respect to the 

introduced cascade energy; this is a consequence of the interaction of the cascading atoms 

with the products of previous cascades.  Simply stated, less energy will be stored in a region 

that is already damaged.  This effect, which has been confirmed by experimental studies 

[83]-[86], is apparent in the MD results of Fig. 5-12 where the incremental change in 

potential energy decreases (on average) in the later cascades.   

 

The total stored energy is given by the formula: 

                                                          0

s p pE N E E                           

where pE  is the final potential energy (per atom), 0

pE  is the initial potential energy and N is 

the number of atoms in the supercell.  For the MD simulation of 15 1.5 keV cascades (Fig. 5-

12), Es was calculated to be 2.68 keV, which is about 12% of the total cascade energy.  The 

remaining 88% represents kinetic energy that was removed by the thermal bath.  On an 

intrinsic basis, this corresponds to a stored energy of 2740 J/g (655 cal/g), which accords 

well with the value of 600 cal/g cited by Woods [87] as an upper bound in heavily irradiated 

graphite.   
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Fig. 5-12.   Buildup of stored energy in a 300K MD graphite supercell.  Each spike  

                      represents a 1.5 keV cascade event. 

 

5.4  Amorphous Carbon 

 

Carbon structures that exhibit no long-ranged order are referred to as amorphous carbon (a-

C).   Disorder is the universal feature of all amorphous carbon; however, many variants of the 

a-C structure have been identified, and the properties of these variants differ considerably 

depending on the details of fabrication.  As shown in the phase diagram of Fig. 5-13, 

amorphous carbon is categorized partially on the basis of the sp
2
 (“graphite-like”) to sp

3
 

(“diamond-like”) binding ratio.  Other significant factors that influence the binding 

characteristics include density as well as the presence of any hydrogen in the system. The sp
2
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to sp
3
 binding ratio is, in fact, closely related to the density and stress of synthesis [88], with 

a lower density and/or stress corresponding to a higher proportion of sp
2
 binding.           

 

Fig. 5-13.  Phase diagram of amorphous carbon, from [89].  The abbreviation ta-C refers to tetrahedral 

amorphous carbon.     

 

Amorphous structures can be generated in MD by raising the temperature of a graphite 

system to well beyond its melting point and then quenching back to a sub-melting 

temperature.  This severely disrupts the distinctive layering of the basal planes, resulting in a 

structure that is isotropic and less energetically favorable than crystalline graphite.  To study 

the effects of amorphization, a 4,000 atom graphite supercell was heated to 9000 K and then 

cooled down at a rate of 2000 K per 2.5 picoseconds to a final temperature of 300 K.  

Densities of 1.7 g/cm
3
 and 2.23 g/cm

3
 were selected for investigation.  The amorphized 

structure is displayed in Fig. 5-14 and the associated phonon frequency distribution is plotted 

in Fig. 5-15.  Comparisons are drawn to a set of neutron spectroscopy measurements of ρ(ω) 

performed by Kamitakahara [90] on sputtered and glassy carbon samples.    
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Fig. 5-14.  Snapshot of an MD amorphous carbon system at T = 300 K and ρ = 1.7 g/cm
3
. 

 
Fig. 5-15.  MD amorphous ρ(ω) versus the measured distributions of sputtered and glassy 

carbon.   

 

 

While all four distributions possess certain common features such as the disappearance of the 

optical graphitic peak at 50 THz, a particularly close correspondence is noticeable between 

the glassy carbon sample and the MD amorphous systems.  One significant difference 

between glassy carbon and sputtered carbon is the sp
3
 content, which is almost nonexistent in 
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the glassy form [89] but comprises a non-negligible fraction of sputtered carbon.  The REBO 

potential is known to favor sp
2
 binding preferentially in amorphous carbon [91], and the 

calculated distribution of bond types in the MD amorphous system, as listed in Table 5.1, 

indeed reveals a preponderance of sp and sp
2
 binding. The resemblance of the MD ρ(ω) to 

glassy carbon is, therefore, not surprising.      

 

Also relevant is the typical density of glassy carbon – about 1.47 g/cm
3
 [92] – which is less 

than the average density of reactor-grade graphite and far below the density of the crystalline 

form.  Indeed, agreement in ρ(ω) is seen to improve as the MD amorphous system density is 

decreased from 2.23 to 1.7 g/cm
3
, implying that density plays an important role in shaping 

the vibrational distribution (and cross section) of the system.  As expected, densification of 

the MD system causes a shift in ρ(ω) towards higher frequencies.                                                 

 

                       Table 5.1.   Fractions of sp, sp
2
, and sp

3
 binding in the amorphous MD systems 

  
1.7 g/cm

3
 2.23 g/cm

3
 

sp 0.20 0.07 

sp
2
 0.79 0.92 

sp
3
 0.01 0.02 

 

5.5  Cross Section Impact 

 

Defect structures such as those described in section 5.2 would be expected to substantially 

alter the thermal neutron scattering properties of graphite.  Fundamentally, the cross section 

at thermal energies is dependent upon the details of interatomic binding, and these details 
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change as irradiation disrupts existing bonds while simultaneously originating new bond 

types in the structure.  The effect of structure is illustrated well by the cross sectional 

difference between pyrolytic and nuclear-grade graphite (see Fig. 1-6).  Ab-initio based 

studies [21] suggest that the presence of simple interstitial or di-interstitial defects at 

concentrations of 3-5% can boost the cross section by 10-80% depending on temperature and 

incident energy.  However, the impact of other damage formations (including basal plane 

vacancies and defect aggregates) is unknown at present.  Results presented earlier in this 

work indicate that: 

(1) MD techniques are capable of generating realistic damage formations in graphite. 

(2) The thermal scattering cross section is accurately determinable from the classical 

time-dependent positions of the atoms comprising these formations 

Thus, an appropriate set of tools has been assembled to perform a broader analysis of 

irradiation effects on the cross section.  The goal of this section is to expand the scope of the 

ab-initio studies to encompass realistic defect clusters, and also to examine the effect of 

cascade buildup. 

 

Cascade damage was introduced to an 8000-atom MD supercell through a series of 1.5 keV 

cascades that were initiated from random lattice sites and always directed towards the center 

of the system.  Because each PKA recoils towards the supercell center, damage accumulation 

is highly non-uniform, and the centermost region is preferentially damaged whereas much of 

the remainder of the system is left unaltered.  Cross section analysis was performed only on 

the damaged region of the supercell, herein defined as all atoms that possessed (at any point 
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in the simulation) a kinetic energy in excess of the threshold displacement energy (Ed) of 

graphite, as well as all neighbors of those atoms.  Ed varies with crystallographic direction in 

graphite [28]  and assumes a minimum value in the range of 23 – 36 eV ([28],[93],[94]).  For 

the purposes of the present work, a threshold energy of 30 eV is assumed. 

 

5.5.1  Cascade buildup at 300K  

 

Fig. 5-16 through Fig. 5-19 show the cross section effect of a progressively increasing degree 

of damage in the graphite system.  Changes in the scattering law are indicated in Fig. 5-20. 

The displayed set of plots include snapshots of the atoms comprising the damaged region of 

the supercell; from the time-dependent positions of these atoms, the incoherent cross section 

of the damaged region was determined using the correlation function methods developed in 

Chapters 3 and 4.  Also shown is the progression of ρ(β) with increasing cascade buildup.  

According to this analysis, radiation damage causes an increase in the inelastic cross section 

by as much as 48%, with the largest augmentation observed in the incident energy range of 

0.01 – 0.03 eV.  As the level of damage rises, the defect structure transitions from simple 

vacancies and interstitials to partial amorphization at the highest buildup level.  Structural 

changes caused by damage are further elucidated by the behavior of Gs(r,t), given in Fig. 5-

21.  Because defect-laden regions of the supercell can maintain a higher temperature than the 

overall system within the studied timeframe, cross section analysis was performed at the 

average temperature of the damaged region, which varies by as much as 28% from the bath 

temperature.                                    
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Fig. 5-16.   Damage effect on the total and differential cross section following (1) 1.5 keV cascade initiated at 300 K. 
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 Fig. 5-17.  Damage effect on the total and differential cross section following (3) 1.5 keV cascades initiated at 300 K. 
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 Fig. 5-18.   Damage effect on the total and differential cross section following (7) 1.5 keV cascades initiated at 300 K. 
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Fig. 5-19.   Damage effect on the total and differential cross section following (13) 1.5 keV cascades initiated at 300 K. 
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Fig. 5-20. Effect of cascade buildup on the self part of the thermal scattering law following a) 1 cascade; b) 3 cascades; c) 7 cascades;  

and d) 13 cascades  
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Fig. 5-21.  Effect of damage on the self part of G
cl
(r,t).  The displacement bin width, Δr, is 0.01 Å. 

                                                                   

 

 

As apparent in the above plots, cascade buildup tends to increase the availability of low- 

frequency vibrational states, which in turn raises the magnitude of the scattering law in the 

corresponding range of energy transfers.  Indeed, from Eqs. (4.10) and (4.11), the scattering 

law is seen to be directly proportional to ρ(β) in the limit of small α.  The interrelations 

between ρ(β) and S(α,β) are demonstrated by comparing S(α,β) in the damaged region to 

S(α,β) in crystalline graphite, at specific values of β chosen to correspond with significant 

features of the ρ(β) curve.  These values of β were selected from the low energy portion of 
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ρ(β), which exerts a disproportionate influence on the scattering cross section due to the 

attenuation of accessible modes through the Planck distribution.  By the same token, 

alterations to the features of ρ(β) at high frequencies have a negligible impact on the cross 

section.  In the high- energy (free atom) limit of σ(E), the accessibility of vibrational states is 

unrelated to the magnitude of the cross section. 

 

The presence of any degree of damage caused broadening and shifting in Gs(r,t), which, 

through Eq. (4.6), is associated with a greater freedom of movement (i.e. a higher mean-

squared displacement).  In general, an increase in the mean-squared displacement is 

indicative of a greater availability of low frequency vibrational modes.  This is consistent 

with the observed changes in the vibrational spectra and scattering law.      

 

Because the MD-derived scattering law is distilled from the Fourier transformation of a time-

dependent signal, the primary source of uncertainty in the calculated cross section is the 

signal length itself.  Assuming that the bin width in frequency space is held constant, the 

variance of individual estimates of the scattering law (or of any other function of ω) will 

exhibit a 1/N relationship, where N is the signal length.  Consequently, a test of convergence 

with respect to N is useful in assessing the uncertainty of the present calculations.  For this 

purpose, the effect of N on the computed 3-cascade frequency distribution is shown in Fig. 5-

22.  Anisotropy in the graphite structure implies that some additional uncertainty could arise 

from the directionality of PKA launch.  This factor is negligible at higher buildup levels and 

could be eliminated entirely through a directional-averaging procedure. 
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Little change is observed when N is raised from 131072 steps to 262144 steps, although some 

minor shifting does occur in the highest-frequency modes.  At lower frequencies, the increase 

in N is associated with a smoothing of the distribution (as anticipated due to the reduction of 

variance); however, no significant changes are evident in the distribution itself.  Hence, the 

frequency-dependent properties of the system are judged to be well-converged at this signal 

length.   

 

 

Fig. 5-22.  Convergence of the frequency distribution with respect to the number of MD time steps. 
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5.5.2 Cascade buildup at 800K  

 

Since the temperature of the scattering system can influence the cascade buildup process, it is 

productive to compare the 300K results against those from an equivalent high-temperature 

simulation.  To this end, the sequence of (3) successive 1.5 keV cascades was repeated at an 

ambient temperature of 800K.  The resulting cross sections and frequency distribution are 

given in Fig. 5-23, and the associated scattering law is shown in Fig. 5-24.  Little change is 

observed relative to the 300K run, suggesting that the impact of temperature is minimal on 

the MD timescale.  On a larger timescale, however, a higher ambient temperature would be 

expected to enhance diffusional processes in accordance with the Arrhenius factor, possibly 

leading to an annealing mechanism that alters the post-cascade structure (and cross section) 

to a much greater extent than at 300 K.  This prospect remains speculative under the 

framework of the present calculations, which are applicable prior to the commencement of 

diffusional migration.       
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Fig. 5-23.  Damage effect on the total and differential cross section following (3) 1.5 keV cascades initiated at 800 K. 
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Fig. 5-24.   Effect of cascade buildup on the self part of the thermal scattering law following (3) successive 

cascades at 800K.   

 

 

5.5.3 Impact of damage on ρ(ω)  

 

As the level of damage increases, and especially at high frequencies, ρ(ω) shows an 

unmistakable evolution towards the frequency distribution of amorphous carbon as illustrated 

in Fig. 5-25.  For purposes of comparison, the ab-initio derived frequency distribution of a 

perfect 36-atom graphite supercell containing a di-interstitial [21] is displayed in Fig. 5-26.  

Noteworthy similarities include the enhanced availability of vibrational modes in the range of 

β =1 to β = 2, as well as the shallowing and shifting of the trough at β = 2.75.  The sharp peak 

in the MD distribution just above 50 THz is conspicuously dampened by cascade damage 



www.manaraa.com

 157 

buildup, which is to be expected since the concentration of damage is gradually transforming 

the system into a more isotropic state, thereby breaking the 2D honeycomb arrangement that 

is responsible for the high-energy optical modes.  This effect is not witnessed in the high-

energy modes of the ab-initio di-interstitial system, in which the layered structure 

surrounding the defect was left intact.  Conceptually, it is rational to posit that the presence of 

basal plane vacancies would affect these optical modes to a much greater extent than would 

interplanar interstitials, since the pertinent optical modes are in-plane modes (see Fig. 4-3). 

 

 

Fig. 5-25.  Effect of cascade buildup on the frequency distribution of graphite 
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Fig. 5-26.  Ab-initio based calculation of the ρ(β) impact of adding an interplanar di-interstitial 

into an otherwise perfect 36-atom graphite supercell, from [21].   

 

As shown in Fig. 2-3, the out-of-plane MSD of graphite greatly exceeds the in-plane MSD 

due to the relative freedom of motion within the interlayer gap, which also defines the 

characteristics of the out-of-plane frequency spectrum.  Vibrational modes in the range of 5 – 

12 THz are predominantly out-of-plane optical (ZO) or out-of-plane acoustical (ZA) modes, 

and the existence of interplanar defects would be expected to redistribute the density of 

available states within this frequency interval.  Similarly to the ab-initio di-interstitial study, 

the MD frequency distribution, following cascade buildup, reveals a substantial enhancement 

in the availability of modes at 5 – 12 THz.       

 

Most of the distinctive features of the graphite distribution are progressively smoothed out as 

the damage buildup level rises.  In fact, between 40 and 45 THz – a range coinciding with the 

high-energy peak of the frequency distribution of diamond – the change in the density of 
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states exhibits a positive trend with respect to damage.  Cascade damage broadens the 

distribution of bond lengths and types, and it is therefore not surprising that the frequency 

distribution reflects a somewhat more diamond-like character even though the binding 

remains predominantly sp
2
.                  

 

It is important to note that, in all MD simulations of cascade damage, the average system 

density was held fixed at the density of crystalline graphite.  This fact, combined with the 

penchant of the REBO potential to unduly favor sp
2
 binding, causes some difficulty in 

correlating the MD damaged or amorphous structures to the observed structure of reactor-

grade graphite.  Furthermore, the coexistence of two phases, the presence of pores and the 

resulting gradients in density are not considered in the present MD model.                     
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Chapter 6  

Conclusions and Future Work 
 

In this work, the classical Van Hove correlation functions have been utilized to calculate the 

thermal neutron scattering cross section of graphite in the undamaged and damaged states.  

Although graphite is the focus of present work, the developed methodology is applicable to 

any atomistic system under any set of conditions.  Molecular dynamics techniques were 

employed to model the graphite system and generate an appropriate set of atomic trajectories, 

which are the only required input for computations of the cross section.  Interatomic 

interactions were evaluated using a modified REBO potential, in conjunction with a Lennard-

Jones potential representing the long-ranged Van der Waals forces.  The MD dynamics of the 

graphite system were benchmarked against temperature-dependent experimental data for the 

thermal expansion, mean-squared displacement, and thermal conductivity.        

 

To distill accurate cross section data from the classical MD atomic positions, two main 

hurdles had to be overcome: first, the efficient evaluation of the classical Van Hove 

correlations from raw MD data, and second, the application of quantum corrections to the 

classical scattering formulae.  In the absence of such corrections, the classical scattering law 

was shown to produce cross sections that approach σb rather than σf at high incident energies, 

and that overshoot reference data by nearly a factor of 5 at low energies.     
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Correlation function evaluations were made considerably faster by means of the cross 

correlation theorem, which reduced the calculation from an O(N
2
)  to an O(NlogN) operation.  

Computations of the coherent scattering functions were sped up greatly by switching from κ-

point sampling to the coherent Gaussian approximation beyond the first few neighbor shells 

of an atom.               

 

The quantum effects of importance were identified as the detailed balance condition and 

atomic recoil, both of which relate to the response of the scattering system to neutron 

interaction.  Furthermore, the system response was linked to the imaginary parts of G(r,t) and 

I(κ,t).  Under the classical approximation, these functions are real and symmetric, thereby 

causing a violation of the first-order moment rule of S(κ,ω) while also preventing 

convergence to the free atom limit of the derived cross section.  The application of a simple 

semiclassical harmonic correction to the classical scattering law was found to modify the 

scattering cross section appropriately at low incident energies, but divergence from the free 

atom limit remained apparent. 

 

Due to the deficiencies discovered in the multiplicative semiclassical harmonic correction, a 

novel quantum correction approach was developed on the basis of a transformation from 

I
cl
(κ,t) to I(κ,t) based on the exact Van Hove equations for systems of classical and quantum 

harmonic oscillators.  In this case, the relationship between the real and imaginary parts of 

I(κ,t) is grounded in fluctuation-dissipation theory, and Fourier transformation of the 

complex I(κ,t) function then yields the asymmetric quantum scattering law.  In the limits of 
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small and large momentum transfers, the proposed transformation procedure was 

demonstrated to reduce to the semiclassical harmonic correction and the free atom correction 

respectively, where the free atom correction was derived from the quantum-classical 

correspondence principle.   

 

The quantum-classical I(κ,t) transformation was  proven to generate consistent results that 

agree with ab-initio / NJOY calculations of the scattering law and cross section.  The 

correlation function methods developed in the present work are considerably more versatile 

than the LEAPR / NJOY treatment, however, in that: 

 The incoherent and Gaussian approximations are no longer compulsory. 

 The phonon density of states is a byproduct of the calculation, rather than an input. 

 The processing of the scattering law and cross section is independent of the state 

of matter. 

All of these advantages have been demonstrated in Chapter 4 of the present work.  The MD 

vibrational density of states, extracted from the low-α limit of Ss(α,β), closely matched 

analogous distributions obtained using the dynamical matrix and velocity autocorrelation 

formalisms.  By combining the MD self and distinct density correlations, the total, coherent 

scattering law of graphite was determined and shown to agree with experimental 

measurements at 300K and 533K.  Similarly good agreement was found in benchmarking 

against the coherent and incoherent scattering law of liquid argon at 120 K and 85.5 K 

respectively.                          
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The effect of cascade buildup on the graphite model was studied by launching PKAs into the 

MD supercell, thereby causing collision cascades that leave residual defects in their wake.  

As the buildup is increased, the defect structure was shown to transition from simple 

vacancies and interstitials to extensive interplanar crosslinking, accompanied by the 

amorphization of certain regions.  Specific defect types were identified in the damaged MD 

system such as the interplanar interstitial, di-interstitial, Stone-Wales defect and interplanar 

divacancy defect.  The buildup of stored energy from these defects was confirmed in an MD 

simulation of 15 sequential 1.5 keV cascades in an 8000 atom system at 300 K, where, from 

the change in potential energy, it was found that 12% of the cascade energy (on average) was 

stored in the system through defects.  Due to cascade overlap effects, the rate of stored 

energy buildup decreased with dose.      

 

Because the thermal scattering cross section is highly sensitive to the atomic binding 

characteristics of the system, it was hypothesized that radiation damage would alter the cross 

section.  Indeed, the cross section of damaged graphite was found to exceed the  cross section 

of the crystalline form  by as much as 48%, with the largest increase occurring in the incident 

energy range of 0.01 – 0.03 eV.  All dose levels were associated with increases in the total 

cross section.  From analysis of the frequency distribution and comparison against an ab-

initio di-interstitial study, the enhancement of out-of-plane vibrational modes at 5 – 12 THz 

was correlated with the buildup of interstitials, while the attenuation of the highest-energy 

optical modes (around 50 THz) was linked to vacancies within the basal plane.  These 
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changes were found to be consistent with the ρ(ω) impact of complete amorphization of the 

graphite system.                                       

 

Future Work 

Cross section calculations, in the present work, were performed on graphite in the damaged 

or undamaged state.  Of great interest to the nuclear community is the thermal cross section 

characteristics of reactor-grade graphite – a porous, two-phase material comprised of regions 

of crystalline graphite embedded in a matrix of amorphous carbon.  The classical correlation 

function methodology is entirely compatible with studies of reactor-grade graphite and is 

straightforward to implement once a reliable MD model of the system is formulated.  Such a 

model could feature separate treatments of the amorphous and crystalline regions, or, 

alternatively, could combine them with an appropriate interface.  The results of the present 

work (including damage effects) would be expected to apply to the crystalline region.  An 

important consideration is the density of RG graphite, which averages to 1.6 – 1.85 g/cm
3
 (18 

– 30% lower than the crystalline state alone) but exhibits significant local variations due to 

the co-existence of dissimilar phases.  Since variations in density can cause a frequency shift 

in the phonon spectrum, non-uniformities must be taken into account.      

 

The accuracy of reactor core design calculations could be improved through the compilation 

of a comprehensive set of temperature- and dose-dependent scattering cross sections.  

Essentially, this task would be an extension of the final chapter of the present work.  The 

generality of the cross section extraction tool developed herein suggests that such an analysis 
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could be performed on any reactor material of interest.  Ideally, for coherent scatters such as 

carbon, the impact of damage on the coherent inelastic cross section would also be assessed.  

Coherent calculations of realistic systems exhibiting complex damage formations are 

expected to be rather expensive unless analysis is limited to localized regions of the structure.  

Enormous reductions in computational cost are achievable through implementation of the 

coherent Gaussian approximation in combination with a distance-based cutoff.  Furthermore, 

since the cross section compilation code is designed to run on parallel processors (and with 

very little communicational overhead), a “brute force” strategy could certainly be taken.         
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Appendix A 
 

Thermal Conductivity 

 

An interesting and important property that is expressible in terms of an MD correlation 

function is the thermal conductivity, K – a standard input parameter for thermal-hydraulics 

calculations involving fuel or moderator materials.  Phenomenologically, K is defined in 

terms of the extent by which a temperature gradient instigates a heat flux in a given substance, 

as per the equation:  

                                                                   ''q K T                                                          (A.1) 

where ''q  is the heat flux (heat transmitted per unit area per unit time) and T  is the local 

temperature gradient.  A well-known result of solid state physics is that thermal conductivity 

is fundamentally linked to the propagation of lattice vibrations in a crystal.  Debye 

demonstrated that the conductivity expression can be derived from the kinetic theory of gases 

as:  

                                                                   
1

3
vK C vL                                                        (A.2) 

where v and L  are the average particle velocity and mean free path respectively, and Cv is the 

heat capacity per unit volume [65].  This expression is also valid for solids when the 

variables v and L are interpreted as the phonon velocity and phonon mean free path.  Eq. 

(A.2) applies only to the phonon component of K; in certain materials (especially pure 

metals), thermal energy is also transported by the electrons to a considerable extent.  An 

implication of Eq. (A.2) is that, in the absence of some phonon scattering mechanism, solids 
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would be infinitely conductive.  Real systems, however, exhibit phonon scattering from grain 

boundaries, from defects and from other phonons, with the latter process being highly 

temperature-dependent.   

 

Changes in the thermal conductivity with temperature therefore represent a balance between 

the excitation of additional phonon modes and alterations in the phonon mean free path due 

to scattering phenomena.  Since K is proportional to Cv, the conductivity is zero at 0 K 

(because there are no phonon excitations) and typically reaches a maximum before declining 

monotonically due to increased phonon-phonon scattering.  This argument does not generally 

hold true for materials with a significant electronic component of K, as the electronic 

component tends to increase with temperature.            

  

In the realm of equilibrium MD simulation, the Green-Kubo autocorrelation methodology is 

commonly used to estimate the phonon contribution to thermal conductivity.  The quantity 

being correlated here is the heat current vector,  tJ


, which is completely determined by the 

positions, momenta, and interatomic potential energies as: 

                                                         
ji lk

i

kl

ijik

i

ii vFrhvtJ
, ,2

1 
                                (A.3)                                        

                                                                 
ij

klkl

ij
r

V
F 





                                                        (A.4)                                    

where hi is the site energy of atom i, iv


 is its velocity, F is force, and ijij rrr


  is the vector 

displacement between atoms i and j.  The conductivity relation is given by: 
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                                          
 

   
 

2
10

1 1

3

L

k k

kB

T d J t J t
Vk T L



  






                              (A.5)                     

where V is the MD supercell volume, T is temperature, and L(τ) is the number of MD steps 

available for averaging.  Essentially, the magnitude of the integral in Eq. (A.5) – and hence 

the conductivity – depends upon how quickly the autocorrelation of the heat current vector 

dies away.  In general, the more rapidly this decay occurs the lower the computed 

conductivity will be.  It is well known that the increased frequency of phonon-phonon 

scattering processes at high temperatures gives rise to an inverse relationship between λ and 

T; in other words, the heat current vector quickly “loses memory” of its initial orientation due 

to the action of scattering events. 

   

As a benchmark of the graphite MD code, as well as an illustration of the application of MD 

correlation functions, the basal plane conductivity was evaluated directly from Eqs. (A.3) - 

(A.5) between 300 K and 1800 K using a 12x12x1 (576 atom) supercell.  Typical production 

run times ranged from 600 – 800 picoseconds under NVT ensemble conditions, with 

temperature held constant by a thermal bath.  Fig. A-1 shows the convergence of the heat 

current autocorrelation integral over time, and the resulting conductivities are compared to 

the measurements of Taylor [95]and Null [96] in Fig. A-2.  Agreement with experiment is 

reasonably good throughout the investigated range of temperatures.  Error bars on the MD 

calculations represent the standard error of the mean and are shown for temperatures at which 

multiple conductivity calculations were performed (starting from different initial velocity 

distributions).   
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Fig. A-1.  Convergence of the conductivity integral.  The time required for convergence decreases 

withtemperature, as the heat current vector more quickly “loses memory” of its initial orientation. 

 

 

 
Fig. A-2.  Thermal conductivity of the MD graphite system, calculated using the Green-Kubo 

methodology.Equation Section (Next) 
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Appendix B 
 

B.1   ρ(ω) from the Classical Scattering Law 

 

Starting from the expression for the classical intermediate scattering function under the 

Gaussian approximation:  

                                                     2 21
, exp

2

cl

sI t t  
 

  
 

                                            (B.1) 

where: 

                                                           2 23r t t                                                          (B.2) 

and, recognizing that: 

                                                    2

0

2 ' ' 0 '

t

r t dt t t v v t                                          (B.3) 

The second-order derivative of the mean squared displacement becomes: 

                                                     
 

   
2 2

2
2 0

d r t
v v t

dt
                                               (B.4) 

Because the velocity autocorrelation function and the phonon density of states are Fourier 

conjugates of each other, the velocity autocorrelation can be written as: 

                                                    
3

0 exp
2

Bk T
v v t d i t

M
  





                                (B.5) 

Therefore: 

                                               
 

   
2 2

2

3
expB

d r t k T
d i t

dt M
  





                                 (B.6) 

Now, in the limit of small κ: 
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                                                    2 2

0

1
lim , 1

2

cl

sI t t


  


                                          (B.7) 

Solving for σ
2
(t): 

                                                 
 

2

0 2

2 1 ,
lim

cl

sI t
t








      
  

                                      (B.8) 

and twice differentiating both sides with respect to time: 

                                              
   22 2

02 2 2

,2
lim

cl

sd I td t

dt dt






      
  

                                (B.9) 

Combining Eqs. (B.2), (B.6), and (B.9), the following relation holds between the 

intermediate function and the density of states: 

                               
 

   
2

0 2 2

,2
lim exp

cl

s B
d I t k T

d i t
dt M




  









      
  

                     (B.10)          

Differentiating the backwards Fourier transform of the classical Van Hove scattering law, it 

is apparent that: 

                                   
 

   
2 2

2 2

,
, exp

cl

s cl

s

d I t d
d S i t

dt dt


   





        
  
                  

                                                                
2

, expcl

si d S i t    




   

                                                              2 , expcl

sd S i t    




                               (B.11) 

Substituting this expression into Eq. (B.10) and equating the integrands: 

                                                                         

                                           
 2

0 2

,2
lim

cl

s

B

SM

k T


 
 



 
  

 
                                    (B.12) 
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or, in dimensionless form: 

 

                                             
 2

0

,
lim

cl

sS


 
  




 
  

 
                                             (B.13) 

which defines the relation between the density of states and the classical, symmetric 

scattering law.    

 

B.2   ρ(ω) from the Quantum Harmonic Scattering Law 

 

The quantum harmonic scattering law already depends upon ρ(ω) explicitly as:  

   
 

   
2

exp
21

, exp exp 1 exp '
2 2

2 sinh
2

B

s

B

k T
S i t d i t dt

M

k T


 


    

 


 

 

  
  

        
   

  

         (B.14) 

Taking the low-κ limit and expanding the first exponential term on the RHS: 

            0
lim ,sS


 


  

1
exp '

2
i t dt







  + 

                     

 
   

2
exp

21
exp 1 exp '

2 2
2 sinh

2

B

B

k T
i t d i t dt

M

k T


 


  

 


 

 

  
  

            
   

  

          (B.15) 

Noting that: 

                                                      
1

' exp '
2

i t dt  






                                            (B.16) 
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The first term on the RHS of Eq. (B.15) is seen to be zero since, in any simple solid, ρ(ω)   

0 as ω  0.  Moreover, the present study is concerned with inelastic scattering, for which 

ω 0 by definition (i.e. at least one phonon must be excited or de-excited).  After performing 

the integrations in the second term on the RHS, Eq. (B.15) reduces to: 

                                  0
lim ,sS


 


  

  2 exp
2

4 sinh
2

B

B

k T

M
k T


  




 
 
 

 
 
 

                                   (B.17) 

and converting from the asymmetric to the symmetric scattering law: 

                                     0
lim ,sS


 


  

  2

4 sinh
2 B

M
k T

  




 
 
 

                                      (B.18) 

which, in terms of α and β, is equivalent to:                              

                                           
 

 
0lim ,

2 sinh
2

sS

 
 


                                            (B.19) 

Solving for the density of states, Eq. (B.18) becomes: 

                                   
 

0 2

,4
sinh lim

2

s

B

SM

k T


  
 



    
   

    

                          (B.20) 

and Eq. (B.19) becomes: 

                                            
0

,
2 sinh lim

2
sS



   




  
  

  

                              (B.21) 

which reduces to the classical formula of Eq. (B.13) in the limit β  0.  At any value of β, 

the classical and quantum distributions are related by conversion factor of Eq. (4.29) (without 
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the symmetrizing exponential term), which arose in the derivation of the classical-to-

quantum I(κ,t) transformation.      

 

Equation Section (Next) 
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Appendix C 

Derivation of the Harmonic Semiclassical Correction from the I(κ,t) 
Transform Equations 

 

 

From the definition of the semiclassical correction to the scattering law: 

                                                           
 

 

,

,

s

cl

s

S
Q

S

 


 
                                                      (C.1) 

 the harmonic correction is found by inserting the relevant expressions for systems of 

quantum (  ,sS   ) and classical (  ,cl

sS   ) harmonic oscillators, which are given by Eqs. 

(4.22) and (4.21) respectively.  After this substitution, the correction factor becomes:                                                

        

 
   

 
  

 
 

  2
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d

dt i t t

 
  




 

  


 

 

 

 

  
  

    
  
  
   

    
    

 

 

              (C.2) 

where '  is a dummy Fourier transform variable.  In the limit of small α: 

        

 
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2
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d
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 
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 
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 

 

                  (C.3) 

Utilizing the following relations: 

                                                    
1

' exp ' ' '
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i t dt  



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                                              (C.4) 
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                                    (C.5) 
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





                                (C.6) 

and carrying out the Fourier integration, Eq. (C.3) reduces to the following expression after 

the removal of the zero-frequency components of the transform: 
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
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                               (C.7) 

Integrating over the Dirac delta function simply isolates the integrand, herein evaluated 

at '  .  Therefore:      

                                           

   
 

 
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2
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2

d
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
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 
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 
 
 

 
 
 

                                               (C.8) 

and after converting the hyperbolic sine to exponential form and simplifying the resulting 

formula, Eq. (C.8) becomes: 

                                                        
 1 exp

Q






 

                                                    (C.9) 

which is identical to the harmonic semiclassical correction of Eq. (3.75).   

                                                                


